Напишите нам

Поиск по сайту

Наш блог

Как я заболел во время локдауна?

Это странная ситуация: вы соблюдали все меры предосторожности COVID-19 (вы почти все время дома), но, тем не менее, вы каким-то образом простудились. Вы можете задаться...

5 причин обратить внимание на средиземноморскую диету

Как диетолог, я вижу, что многие причудливые диеты приходят в нашу жизнь и быстро исчезают из нее. Многие из них это скорее наказание, чем способ питаться правильно и влиять на...

7 Фактов об овсе, которые могут вас удивить

Овес-это натуральное цельное зерно, богатое своего рода растворимой клетчаткой, которая может помочь вывести “плохой” низкий уровень холестерина ЛПНП из вашего организма....

В какое время дня лучше всего принимать витамины?

Если вы принимаете витаминные и минеральные добавки в надежде укрепить свое здоровье, вы можете задаться вопросом: “Есть ли лучшее время дня для приема витаминов?”

Ключ к счастливому партнерству

Ты хочешь жить долго и счастливо. Возможно, ты мечтал об этом с детства. Хотя никакие реальные отношения не могут сравниться со сказочными фильмами, многие люди наслаждаются...

Как получить сильные, подтянутые ноги без приседаний и выпадов

Приседания и выпады-типичные упражнения для укрепления мышц нижней части тела. Хотя они чрезвычайно распространены, они не могут быть безопасным вариантом для всех. Некоторые...

Создана программа предсказывающая смерть человека с точностью 90%Смерть научились предсказывать

Ученые из Стэнфордского университета разработали программу предсказывающую смерть человека с высокой точностью.

Зарплата врачей в 2018 году превысит средний доход россиян в два разаЗП докторов

Глава Минздрава РФ Вероника Скворцова опровергла сообщение о падении доходов медицинских работников в ближайшие годы. Она заявила об этом на встрече с журналистами ведущих...

Местная анестезия развивает кардиотоксичностьАнестетики вызывают остановку сердца

Федеральная служба по надзору в сфере здравоохранения озвучила тревожную статистику. Она касаются увеличения риска острой кардиотоксичности и роста сопутствующих осложнений от...

Закон о праве родителей находиться с детьми в реанимации внесен в ГосдумуРебенок в палате

Соответствующий законопроект внесен в палату на рассмотрение. Суть его заключается в нахождении одного из родителей в больничной палате бесплатно, в течении всего срока лечения...


Генетика

Система Rh - одна из наиболее полиморфных систем, антигены которой ко­дируются 2 генами (RHDи RHCE), расположенными на коротком плече хро­мосомы 1 в локусе RHмежду 1р34.3 и 1р36.13 (Cherif-Zahar и соавт. [211], MacGeoch и соавт. [453], Marsh и соавт. [462]).

Три генетические теории

Существуют 3 генетические концепции наследственной передачи антигенов Rh. Первая разработана в начале 50-х годов прошлого столетия Александром Винером (Wiener и соавт. [714, 715]), вторая - в тот же период Рональдом Фишером совместно с Робертом Рейсом (Fisher, Race [283, 284], Race [543]). Третья концепция, получившая в последние годы подтверждение, предложена в 90-х годах прошлого столетия Патрисией Типпетт (Tippett [654, 656]).

Интересно проследить логику построения этих концепций.

Располагая двумя сыворотками: aHTH-Rho и анти-rh', выявляющими 2 антиге­на - Rh и rh', Винер вполне обоснованно допустил, что существует не 2, а 4 аг-глютиногена резус: Rh , rh', Rho' и rh-агглютиноген, не содержащий ни Rho, ни rh'. Он полагал, что аллель Rгена Rhобусловливает продукцию антигена Rho, аллель R1 - продукцию антигенов Rho и rh', аллель г' - антигена rh', а аллель г -отсутствие обоих антигенов - Rho и rh'.

Винер, не имея экспериментальных данных, свидетельствующих о том, что отдельные гены могут быть сцеплены, сделал вывод, что все антигенные признаки Rh контролирует только 1 (но полиморфный) ген (рис. 4.1). Это и явилось основой его концепции, получившей известность как теория одно­го гена

Генетические концепции системы резус

 

Согласно представлениям Винера, разнообразие факторов резус и их сочетаний в наблюдаемых фенотипах людей обусловлено одним геном, который встречается в виде 8 аллеломорфных вариантов: R1, R2, R°, Rz, г, /, г" (см. табл. 4.4).

Обнаружение новых факторов (Е, е, Cw и др.), легко укладывались в концеп­цию Винера. Так, после открытия антигена hr' (с) и hr" (e) он дополнил первона­чальный постулат, указав, что ген R° может кодировать помимо Rh еще и фак­торы hr' и hr" (фенотип Ror, или cDe). Открытие антигена Cw Винер трактовал как обнаружение нового аллеля Rlw, а открытие антигена hrs, присутствующего у большинства людей hr" (e), - как новый аллель RAh°.

Однако по мере открытия новых антигенов и их разновидностей обозначе­ния Винера стали затруднительными.

К середине 50-х годов иммуносерологи располагали уже не двумя, а пятью сы­воротками антирезус, дифференцирующими соответствующие антигены резус: D,

C, Е, с и е. С помощью этих сывороток американской школой исследователей во главе с Винером и английской школой во главе с Фишером и Рейсом были установ­лены 8 гаплотипов, кодирующих различные сочетания антигенов (см. табл. 4.4).

В отличие от Винера, утверждавшего, что ген резус неделим, Фишер и Рейс полагали, что существуют 3 сцепленных локуса (теория трех генов), которые наследуются одновременно. Согласно их представлению, в этих локусах на хро­мосоме в линейном порядке расположены гены D, СкЕ, кодирующие антигены D, С и Е (см. рис. 4.1). Доссе [50] добавил четвертую пару аллельных генов Ff.
В этих же локусах располагаются соответствующие им 3 аллельных гена: d, с и е, кодирующие антитетичные антигены d, с и е. В каждом локусе может присут­ствовать один ген: D или d, С или с, Е или е. Таким образом, каждый индивид получает с хромосомой матери и отца от 3 до 5 антигенных признаков, опреде­ляющих его резус-фенотип.

Фишер сформулировал понятие об антитетичных антигенах и предсказал существование антигенов Е, е и d. Предвидение двух первых вскоре (в 1943 г.) блестяще подтвердили Wiener, Sonn [713], открыв антиген Е, и Mourant [494] (в 1945 г.) - е. Третий гипотетический антиген (d) так и не был обнаружен. Антитела анти-d были описаны Hill и Haberman в 1948 г. [349], Matthes в 1950 г. [467], однако эти находки не подтвердились. По-видимому, указанные авторы исследовали неизвестные в то время антитела анти-се, реагирующие с эритро­цитами cde, но не реагирующие с эритроцитами CDe, cDE, что создавало ви­димость aHTH-d-специфичности. Как сегодня известно (см. далее), у лиц Rh-в локусе, симметричном D, генетический материал в виде аллеля dне найден. Отсутствие гена dобъясняет, почему многочисленные целенаправленные пои­ски антигена d не увенчались успехом.

Теория трех генов позволила установить последовательность генов в генном локусе RH, а также объяснить происхождение редких фенотипов резус.

В соответствии с этой теорией локусы RHрасполагаются в последователь­ности Dd- Сс - Ее (см. рис. 4.1). По мнению Фишера и Рейса, разрыв генно­го комплекса происходит на дистанции С-Е чаще, чем на дистанции D- С, из чего следует, что гены Z) и Е наиболее удалены друг от друга. Доказательством такого расположения генов явилась находка фенотипа -D- (Race и соавт. [552], Read и соавт. [556]), для которого характерно отсутствие антигенов Сс и Ее. Если бы ген Dрасполагался между генами С и Е, Сс - Dd- Ее, то делеция ло-куса Сс и Ее в варианте -D- должна была так или иначе сказаться на гене D. Однако, напротив, антиген D в фенотипе -D- серологически более выражен, чем в фенотипе CDe и cDE, что связано, по-видимому, с отсутствием конку­рентного влияния генов С и Е на Dвследствие их делении.

Согласно теории трех генов, редкие генные комбинации (dCe, dcE, DCE, dCE) возникают в результате кроссинговера частых генных комбинаций: DCe, DcE, dee. На рис. 4.2 приведены варианты кроссинговера. Если крос-синговер происходит между хромосомами, несущими гаплотипы DCeи dee, образуется редкий гаплотип dCe; если между хромосомами, несущими га­плотипы DcEи dee, - редкий гаплотип dcE; если между DCeи DcE - DCE. При повторном кроссинговере DCEи deeобразуется еще более редкий га­плотип - dCE. Как видно из рис. 4.2, гаплотип Deeобразуется при каждом из перечисленных вариантов кроссинговера. Сумма частоты (2,49 %) ред­ко встречающихся в европеоидных популяциях фенотипов (dCe, dcE, DCE, dCE) и частота фенотипа Dee (2,6-3 %) примерно совпадали, что подтверж­дало правильность теории в целом.

Относительная редкость кроссинговера (~ 3 %), по мнению Фишера и Рейса, свидетельствует о том, что гены DCEблизко расположены друг к другу и кроссинговер между ними происходит скорее как исключение, чем как правило.

Большинство исследователей нашли CDE-терминологию более удобной для повседневного использования, чем Rh-Hr, и она получила статус прикладной.

 Варианты кроссинговера по Фишеру и Рейсу

Благодаря своей простоте теория трех генов Фишера - Рейса завоевала всеобщее признание и несколько потеснила концепцию Винера, которая от­нюдь не утратила своего значения и практического применения до настояще­го времени.

Спустя годы концепцию трех тесно связанных локусов модифицировали в однолокусную, которая предполагает 3 сублокуса в одном генном комплексе.

Открытие Sanger и соавт. [596] антигенов f (се) и rh. (Се) выходило за рам­ки концепции трех генов, постулирующей принцип «один ген - один антиген». Следовало признать, что система Rh включает не 3, а 4 (С, D, Е + се), затем 5 (С, D, Е, се + Се) локусов. Перекрестно реагирующие сыворотки и необычные Rh-фенотипы также не вписывались в теорию трех генов и кроссинговера по Фишеру. Номенклатура Фишера - Рейса стала затруднительной для обозначе­ния большого числа новых Rh-антигенов и ей на помощь пришла цифровая но­менклатура, предложенная Розенфельдом.

Свои концепции Винер, Фишер и Рейс основывали исключительно на ре­зультатах серологических исследований (популяционные и семейные). Концепция Типпетт (теория двух генов) также основана на данных серологиче­ских исследований, однако более широкого масштаба. К началу 90-х годов арсе­нал сывороток, которым располагали иммуносерологи, составил более 40 наи­менований, включая анти-се, анти-Се, анти-сЕ и анти-СЕ. Накопились много­численные данные о качественном и количественном разнообразии фенотипов Rh, в том числе данные о биохимической природе Rh-антигенов.

Moore и соавт. [482] в 1982 г. и Ridgwell и соавт. [564] в 1983 г. независи­мо друг от друга нашли, что Rh-антигены располагаются на двух протеинах мембраны эритроцитов: один белок несет на себе антиген D, другой - С и Е. Имеющиеся сведения послужили толчком к формированию новой, современ­ной молекулярно-генетической модели системы Rh, предложенной Типпетт.

Согласно концепции Типпетт [654, 656], система Rh контролируется дву­мя тесно сцепленными структурными генами, один из которых кодирует D-антиген, другой - антигены С, с, Е и е. Первый ген включает 2 аллеля: D, по­лучивший название RHD, и не-D(отсутствие кодирующего субстрата); второй ген представлен четырьмя аллелями: се, Се, сЕ и СЕ. Продукты второго гена, получившего название RHCE, идентифицируют с помощью 5 специфических сывороток: анти-D, анти-се, анти-Се, анти-сЕ и анти-СЕ (табл. 4.7). По мнению Типпетт, отдельные эпитопы полипептида СсЕе (С, с, Е и е) более иммуноген-ны, чем их комплексы (се, Се, сЕ и СЕ), в связи с чем антитела анти-с, анти-С, анти-Е и анти-е встречаются чаще, чем комплексные антитела анти-се, анти-Се, анти-сЕ, анти-СЕ.

Данные, представленные Типпетт (см. табл. 4.7), с такой же убедительно­стью свидетельствуют о существовании четырех аллелей гена СЕ, как и данные, полученные в свое время Wiener, Fisher и Race с помощью пяти специфических сывороток: анти-D, анти-с, анти-С, анти-Е и анти-е. Вопрос о том, какая кон­цепция ближе к действительности, сегодня решается в пользу взглядов Типпетт, подтверждающихся данными молекулярно-биологических исследований.

Необычные, в том числе редкие, фенотипы резус, как полагает Типпетт, воз­никают в результате мутаций, делеций и транслокаций генетического веще­ства. На это указывают фенотипы с ослабленными антигенами (С)(е) или (с)(е) (табл. 4.8), которые ассоциированы с редкими антигенами - Rh32, Rh35, Rh36, Rh48. Мутации и другие воздействия на генный локус RHнарушают продук­цию нормального антигена, создают новые необычные формы антигенов.

Реакции генного продукта основных 8 гаплотипов*

Генный продукт

Реакция с сыворотками

анти-D

анти-се

анти-Се

анти-сЕ

анти-СЕ

Dee

+

+

-

-

-

DCe

+

-

+

-

-

DcE

+

-

-

+

-

DCE

+

-

-

-

+

dee

+

+

-

-

-

dCe

-

-

+

-

-

dcE

-

-

-

+

-

dCE

-

-

-

-

+

 

* По Tippett [654].

Антигены, продуцируемые редкими аллелями RHCE-локуси при его повреждении*

 

Повреждение СЕ протеина

Продуцируемые антигены

(С)(е)

Rh9Cx

(С)(е)

Rh32

(С)(е)

Rh35

(С)(е)

Rh48 (JAL)

(с)(е)

Rh36 (Bea)

* По Tippett [654].

Задолго до Tippett (в 1964 г.) идею о существовании двух генов RH, струк­турного и операторного, высказал Lauer [410], однако его исследования не были продолжены.

Sanger и соавт. [596], исследуя природу антигена f, установили, что этот анти­ген вырабатывается в случае, если гены сиерасположены на одной хромосоме в положении цис. Такое же заключение было сделано ими относительно антигена Се: он вырабатывается г/ис-комбинацией генов Cue. Race и Sanger приблизились к современному пониманию того, что генетический материал, именовавшийся ра­нее локусами с, е, С и Е, представляет собой один и тот же ген, имеющий аллели се, Се, сЕ и СЕ. Однако этот вывод не был ими сформулирован.

Следует обратить внимание на некоторые противоречия и сложности, привне­сенные новым пониманием того, что система Rh кодируется не тремя или четырь­мя парами аллельных генов, а только двумя: RHDи RHCE. Прежние генетические теории объясняли все предельно просто. Так, в соответствии с Я/ьЯг-концепцией фенотип R R^, или Rho!" hr'", обусловлен гаплотипами R1и R2; в соответствии с CDjE-концепцией фенотип CcDEe кодируется генами С, с, D, Enе, переданными индивиду по наследству с гаплотипами CDeи cDE. С позиций двухгенной тео­рии фенотип CcDEe объяснить сложнее. Согласно двухлокусной модели индивид CcDEe должен унаследовать ген RHDи один из аллелей гена RHCE (RHce, RHCe, RHcEили RHCE). В любой из возможных комбинаций (Dee, DCe, DcE, DCE) пол­ного набора антигенов CcDEe не получается и в этом заключается противоречие.

Вряд ли можно полагать, что аллель RHCeпроизводит антигены с и Е, а ал­лель RHcE- антигены Сие. Это маловероятно, поскольку нарушает основную идею двухгенной модели и, кроме того, не соответствует результатам серологи­ческих исследований. Остается признать, что фенотип CcDEe является продук­том гибридного гена Ce-D-cE. Такое объяснение более правдоподобно. Как по­казали результаты исследования последних лет, фенотип cde часто обусловлен делецией гена RHD. Возможность гибридизации генов RH, в силу их высокой ьл|рмологии, не вызывает сомнения и, по-видимому, явление частое.

Фенотипы и генотипы Rh

Реакция (+, -) с антителами к антигену

Фенотип

Частота, %

Генотип

Частота,

%

Резус-принадлежность

D

С

Е

с

е

се

Се

сЕ

СЕ

Cw

+

+

-

+

+

+

+

-

-

-

CcDe

31,93

CDe/cde CDe/cDe cDe/Cde

29,90 1,98 0,05

2

XЛ

td и

н в

я

о

Щ о

G 1

а >ч о ©

Он

+

+

-

-

+

-

+

-

-

-

CDe

16,81

CDe/Cde CDe/Cde

16,01 0,80

+ + + + + +

++ ++ ++

++ ++

++

++ ++ ++

+ + + +

+

+ +

+

+

+

+ + + +

+

+

+ +

-

CcDEe

13,69

CDe/cDECDE/cDeCDe/cdEcDE/Cde

CDE/cde cDE/CdE

12,24 0,01 0,97 0,27 0,19

0,006

+

 

+

+

+

+

-

+

-

-

cDEe

11,82

cDE/cde cDE/cDe cDe/cdE

10,04 0,72 0,06

+

+

+

-

+

, -

+

-

+

-

CDEe

0,07

CDE/Cde CDE/Cde

0,07

+

-

+

+

+

-

-

+

-

-

cDE

2,49

cDE/cDE cDE/cdE

2,49

+

-

-

+

+

+

-

-

-

-

cDe

2,21

cDe/cde cDe/cDe

2,21

+

+

+

+

-

-

-

+

+

-

CcDE

0,035

CDE/cdE

cDE/CdE

0,035

+

+

+

 

 

 

 

 

+

-

CDE

0,00

CDE/CDE

0,00

+ +

++

++

-

+ +

__

+

+

+

+ +

CwCDEe

2-9

CWDE/Cde CwDe/CDE

2-9

+

+

-

-

+

-

+

-

-

+

CwCDe

CwDe/CDe

CwDe/Cde

Cwde/CDe

+

+ + +

1

-

-

+

+

+

-

-

-

+

CwcDe

CwDe/cDe CwDe/cde

+ + +

+ + +

+

+

-

-

+ +

+

CwcDEe

CwDE/cdeCwdE/cDeCwDe/cDE

-

-

-

+

-

-

-

-

+

CwCwDe

CwDe/CwDe CwDe/Cwde

 

Реакция (+, -) с антителами к антигену

Фенотип

Частота,

%

Генотип

Частота,

%

Резус-принадлежность

D

С

Е

с

е

се

Се

сЕ

СЕ

Cw

1

-

-

+

+

+

-

-

-

-

cde

13,5

cde/cde

13,5

Резус-отрицательные

-

+

-

+

+

+

-

-

■"'*

-

Cede

2,14

Cde/cde

2,14

-

+

-

-

+

+

-

-

-

-

Cde

Cde/Cde

-

(,т-.

+

+

+

+

-

+

-

-

cdEe

0,27

cdE/cde

0,27

-

-

-

+

-

-

-

+

-

-

cdE

cdE/cdE

В

++

++

+ +

+ +

+

+ +

+

+

CcdEe

0,08

Cde/cdE Ce(E/cde

0,08

-

+

+

 

 

 

 

 

+

-

CdE

CdE/CdE

-

+

+

+

-

-

-

+

-

-

CcdE

CdE/cdE

-

+

+

-

+

-

+

-

+

-

CdEe

CdE/Cde

-

+

+

-

+

-

-

-

+

+

CwCdEe

0,00

Cwde/CdE

0,00

-

-

-

+

+

+

-

-

-

+

Cwcde

0,00

Cwde/cde

-

-

-

-

+

-

-

-

-

+

Cwde

0,00

Cwde/Cwde

В табл. 4.3 приведены 3 номенклатуры антигенов резус: Винера (Wiener [707]), Фишера - Рейса (Race [543], Fisher, Race [284]) и Розенфельда (Rosenfield и соавт. [571]).

В учреждениях службы крови наиболее распространена номенклатура Винера и Фишера - Рейса. В печатных изданиях параллельно используют номенклатуру ISBT.

Номенклатуры Винера и Фишера - Рейса подчеркивают антитетичные отно­шения антигенов. Винер обозначил антигены резус буквами Rho, rh', rh" с ниж­ним и верхним индексом, а антитетичные антигены - буквами, переставленны­ми наоборот: Hr , hr', hr". Фишер и Рейс обозначили антигены резус прописны­ми буквами С, D, Е, антитетичные - строчными буквами с, d, e, что упрощает написание и облегчает восприятие.

По мере обнаружения новых Rh-антигенов обозначать их по Винеру и Фишеру - Рейсу стало затруднительно.

Классификация Розенфельда характеризует серологические различия Rh-антигенов и не содержит указаний на антитетичные отношения антигенов. Последние пронумерованы в порядке их открытия или причисления к системе Rh. При большом числе специфичностей номенклатура Розенфельда более приемлема по сравнению с буквенными обозначениями Винера и Фишера - Рейса, в связи с чем она была положена в основу универсальной классификации ISBT не только ан­тигенов резус, но и всех других антигенных систем эритроцитов. Различие между оригинальной номенклатурой Розенфельда и компьютерной версией ISBT заклю­чается в том, что в первой при обозначении антигена используют строчную букву h (Rh), а в последней - прописную букву Н (RH). Система Rh (RH no ISBT) обозначе­на 004, антигены пронумерованы: D - 004001, или RH1 (Rhl); С - 004002, или RH2 (Rh2); E - 004003, или RH3 (Rh3) и так далее до BARC, обозначенного как 004052, или RH52 (Rh52). Обычно вместо цифр используют краткие эквиваленты - D, С, Е.

Другие системы антигенов, согласно версии ISBT, обозначают так же, как RH прописными буквами: Lutheran - LU, Lewis - LE, Duffy - FY, Kidd - Ж и т. д. в отличие от прежних наименований - Lu, Le, Fy, Jk.

Таблица 4.3 Три номенклатуры антигенов Rh-Hr

По Винеру Rh-Hr

По Фишеру -Рейсу CDE

По

Розенфельду

RhN

По Винеру Rh-Hr

По Фишеру -Рейсу CDE

По

Розенфельду

RhN

Rh

D

Rhl

hrs

-

Rhl9

rh'

С

Rh2

-

es

Rh20

rh"

E

Rh3

-

CG

Rh21

hr'

с

Rh4

-

CE

Rh22

hr"

e

Rh5

-

Dw

Rh23

hr

f, се

Rh6

-

ET

Rh24*

rh.

i

Се

Rh7

-

LW

Rh25*

fhwl

Cw

Rh8

-

-

Rh26

rhx

Cx

Rh9

-

cE

Rh27

hrv

V,ces

RhlO

hrH

-

Rh28

rhw2

Ew

Rhll

rh

Ш

-

Rh29

rhG

G

Rhl2

-

Goa

Rh30

RhA

-

Rhl3*

hrB

-

Rh31

RhB

-

Rhl4*

RN

-

Rh32

Rhc

-

Rhl5*

R Har

-

Rh33

RhD

-

Rhl6*

HrB (Bastiaan)

-

Rh34

Hr

-

Rhl7

 

-

Rh35

Hr

-

Rhl8

 

-

...доШ157

Примечание. - аналог обозначения отсутствует, * исключенные из классифи­кации Rh-антигены.

В 1962 г., когда была принята цифровая номенклатура Розенфельда, при­своены номера Rh с 1 по 25, а далее, с 1972 по 1996 г., - с 26 по 52 [246, 248, 375, 435, 437, 544, 647]; некоторые из ранее присвоенных номеров были ис­ключены' из системы (Rhl3-Rhl6, Rh24, Rh25) из-за несоответствия правилам Номенклатурного комитета, предъявляемым к доказательной базе [375, 657].

В табл. 4.4 представлены обозначения фенотипов, гаплотипов и генов RH-эквиваленты трех номенклатур.

Короткое обозначение фенотипа резус-отрицательного человека - г (по Винеру), cde (по Фишеру - Рейсу) - совпадает с гаплотипом cdeи в боль­шинстве случаев, за исключением делеции гена С#, с его генотипом cde/cde.

Фенотип резус-положительного человека может быть записан как R или CDe, R, или cDE, Rz или CDE, а генотип - как R'/R1или CDe/CDe, R'/R2или CDe/cDE, R'/r}или CDe/cde. В некоторых публикациях при написании феноти­па и генотипа по Винеру нижний и соответственно верхний индекс не использу­ют: Rl, R1/R2, что не затрудняет восприятие и не является ошибкой.

Таблица 4.4

Фенотипы, гаплотипы и гены системы Rh-Hr

По Винеру

По Фишеру - Рейсу

По Розенфельду*

Частота гаплотпа, %**

фенотип

кодирующий ген

фенотип

кодирующие гены

MRhV')

R1

CDe

CDe

Rh: 1,2,-3,-4,5

40,76

R2(Rho"hr')

R2

cDE

cDE

Rh:l,-2,3,4,-5

14,11

R (Rh hr'")

Ov        0              '

R°

cDe

cDe

Rh: 1,-2,-3,4,5

2,57

Rz(Rho'")

Rz

CDE

CDE

Rh: 1,2,3,4-5

0,24

r(hr'")

r

cde

cde

Rh:-l,-2,-3,4,5

38,86

r'Crh'hr")

r'

Cde

Cde

Rh:-l,2,-3,-4,5

0,98

r" (rh" hr')

r"

cdE

cdE

Rh:-l,-2,3,4-5

1Д9

ry(rh'")

гУ

CdE

CdE

Rh:-1,2,3,-4-5

0,08

Rlw

Rlw

CwDe

Cwde

Rh: 1,-2,-3,5,8

2-9

jtyj

RZw

CWDE

CWDE

Rh: 1,-2,3,-4-5,8

ryw

ryw

CwdE

CdE

Rh:-1,-2,3,-4,-5,8

* В номенклатуре Розенфельда обозначения генов не применяют. ** По Race и Sanger [544], М.А. Умновой [111] и др. источникам.

Среди европеоидов чаще всего регистрируют гаплотипы CDe, cde и cDE (со­ответственно 40,76; 38,86 и 14,11 %).

В обозначениях по Винеру и Фишеру - Рейсу, как правило, не указывают анти­гены, отсутствующие на эритроцитах, например: Rho' " (CDE), ry (CdE). Такая за­пись не содержит указаний на то, определялись ли эти антигены (в данном приме­ре с и е). При обозначении по Розенфельду указывают все антигены, которые опре­деляли в эритроцитах с помощью соответствующих сывороток независимо от того, найдены эти антигены в эритроцитах или нет, например, фенотип Rho'" (CDE) обо­значают как Rh:l, 2, 3,-4,-5; фенотип ry(CdE) обозначают как Rh:-1,2,3,-4,-5 и т. д.. Сведения о фенотипе исследуемого представлены в этой номенклатуре бо­лее информативно. Последний пример может быть записан по Фишеру - Рейсу как D-C+E+c-e-, что также информативно и, как правило, такую систему записи ис­пользуют при заполнении журнала регистрации исследований.

Поскольку антигена d, антитетичного (реципрокного) антигену D, не суще­ствует, буква d, используемая повсеместно при написании фенотипа, генотипа и гаплотипа RH, означает отсутствие антигена D.

Часто термин «гаплотип» применяют как синоним гена, отождествляя понятия ге­нетической концепции Винера [707] - теории одного гена, с генетической концепци­ей Фишера - Рейса [284, 543] - теорией трех генов. Например, ген г в прикладном значении - это то же самое, что гаплотип cdeили генный комплекс cde; ген Всоот­ветствует гаплотипу cDeи одновременно одноименному генному комплексу cDe.

Фенотип cde и CDe трактуют как генный комплекс cdeи CDeв гомозиготной комбинации cde/cdeи CDe/CDe, а фенотип cDe - как генный комплекс гетерози-гот cDe/cde, что в большинстве случаев совпадает с действительностью, посколь­ку гомозиготы cDe/cDeвстречаются редко.

Система резус полиморфна. Помимо четко очерченных антигенов, она вклю­чает варианты, при которых антигены выражены слабо либо вовсе не продуци­руются. Для ясности дальнейшего изложения объясним некоторых обозначе­ния, встречающиеся в современных публикациях.

Как видно из табл. 4.5, наименования отдельным вариантам, в том числе редко встречающимся, присваивали в значительной мере произвольно. В этом плане классификация ISBT внесла определенный порядок. Тем не менее обо­значения, характеризующие необычную выраженность антигенов или их не­ожиданное отсутствие, в литературе сохраняются, например фенотипы Rhnull, -D-, (C)D(e). В последнем случае необычные фенотипы со слабовыраженны-ми антигенами Сие, кодируемые геном RNи чаще встречающиеся у негров, обозначают как (C)D(e), выделяя скобками очень слабые или практически от­сутствующие антигены Сие.

Обозначение f (се) и rh. (Се) с дублирующим синонимом, помещенным в скобки, более информативно для читателя, чем обозначение этих антигенов как f и rh., поскольку указывает на генетическую подоплеку их формирования (по­зицию цис генов се или Се). Антиген f продуцируется комбинацией генов с и е в положении цис. При размещении генов сиевпозиции транс антиген f не фор­мируется. Аналогичная ситуация имеет место в отношении антигена rh., кото­рый вырабатывается в том случае, если как минимум на одной из унаследован­ных гомологичных хромосом в позиции цис расположены локусы Си е. Гены С иев позиции транс антигена rh. (Се) не производят.

Антигены резус встречаются с частотой: D - 85 %, С - 70 %, с - 80 %, Е -30 %, е - 97,5 %. В табл. 4.6 представлены варианты фенотипов и генотипов Rh, а также результаты серологических реакций, в которые вступают эритроциты с тем или иным сочетанием антигенов резус. Фенотип Rh-Hr выявляют с помощью 5 сывороток: анти-D, анти-С, анти-Е, анти-с и анти-е. Сыворотки анти-се, анти-Се, анти-сЕ и анти-СЕ обнаруживают на эритроцитах дополнительный антиген­ный продукт, кодируемый генами, когда они находятся в одном гашютипе одно­временно. Реагирование этих сывороток при одинаковом фенотипе, но разном ге­нотипе людей не совпадает, что может быть использовано для установления ге­нотипа Rh по фенотипу. Например, лица с фенотипом CcDEe (Се+се-сЕ+СЕ-), с большой степенью вероятности (99,99 %) имеют генотип CDe/cDE(генотипы Cde/cDEили CDe/cdEменее вероятны), а лица с тем же фенотипом CcDEe (но Се-се+сЕ-СЕ+) имеют генотип CDE/cdeили, что менее вероятно, CdE/cDe.

Выраженность антигенов Rh на эритроцитах варьирует в широком диапазо­не. Выделяют сильные, средние и слабые формы антигенов. Эритроциты, не­сущие эти формы, обычно не имеют качественных различий, но отличают­ся от образца к образцу степенью агглютинабельности. Выраженность агглю­тинации (агтлютинабельность) определяется количеством антигена, представ­ленного на поверхности эритроцитов, что обусловлено генетическими фактора­ми. Агглютинабельность эритроцитов людей с генотипом cDE/cDE выражена сильнее, чем эритроцитов лиц с генотипом CDe/CDe, поскольку количество ан­тигенных участков на эритроцитах DE больше, чем на эритроцитах DC. Редкий фенотип -D-, при котором отсутствуют антигены С, Е, с и е, отличается наибо­лее высоким содержанием субстанции D по сравнению с нормальным D-типом. Менее всего антиген D выражен на эритроцитах со слабым D-фенотипом (Du) и совсем не выражен на эритроцитах Rh   .

В редких случаях варианты агглютинабельности могут быть обусловлены качественными различиями парциальных антигенов, которые содержат непол­ный набор D-эиитопов.

Не утверждая, что это лежит в основе статуса нереспондерства, мы тем не ме­нее приведем некоторые размышления. Предположим, что резус-принадлежность D- данного человека обусловлена неполной делецией гена D, и небольшая часть генетического материала все же сохранилась. Этой части не достаточно, чтобы вос­производимый ею субстрат мог быть выявлен серологически как D+, однако мо­жет быть достаточно, чтобы антиген D, введенный с перелитой кровью, не воспри­нимался как чужеродный. Таким образом, нереспондеры по отношению к резус-антигену - это лица, в эритроцитах которых присутствует вещество, гомологичное антигену D, в небольшом, серологически невыявляемом количестве (скрытый D). Не исключено, что такие лица могут иметь фенотип Dd, при котором следовые ко­личества антигена D выявляют только с помощью адсорбции - элюции.

Предпринятые некоторыми исследователями попытки индуцировать состоя­ние толерантности к резус-фактору посредством орального введения эритроци­тов Rh+ не увенчались успехом. Остается недоказанным предположение о су­ществовании тот. респондерства и нереспондерства.

Благодаря молекулярно-биологическим исследованиям Colyn, Monro, Wolter, Cherif-Zahar, Le Van Kim и других исследователей стало понятно, почему анти­ген D столь иммуногенен.

В 1991 г. Colyn и соавт. [233] выяснили, что резус-положительные лица име­ют 2 гена: RHDи RHCE, кодирующие выработку резус-антигенов. В то же вре­мя у большинства резус-отрицательных людей ген RHDподвергнут делеции и они имеют только 1 ген - RHCE. Последний представлен 4 аллелями: RHCe, RHcE, RHceи RHCE, кодирующими соответственно 4 варианта субстрата - Се, сЕ, се и СЕ. Полипептиды, кодируемые аллелями RHCE, имеют весьма значи­тельное структурное сходство.

Как установили Mouro и соавт. [496], Wolter и соавт. [720], Cherif-Zahar и со­авт. [208], Le Van Kim и соавт. [418], полипептид, несущий иммунодоминант-ный эпитоп С, отличается от полипептида, несущего иммунодоминантный эпи-топ с, всего лишь четырьмя аминокислотами в цепи из 417 аминокислот, и лишь одно из этих 4 различий определяет специфичность Сие. Полипептид, несущий Е-специфичность, отличается от несущего е-специфичность одной аминокисло­той. Иными словами, когда реципиенты Cde получают трансфузию эритроцитов cde, а реципиенты cde - трансфузию эритроцитов Cde, иммунная система реципи­ента не всегда отличает перелитое вещество Rh от своего собственного. То же са­мое происходит, когда людям с фенотипом cDE, cdE или cDe, cde переливают эри­троциты cDe, cde или соответственно cDE, cdE: их иммунная система не в состо­янии отличить чужой антиген от собственного по одной различающейся позиции.

Полипептид, кодируемый геном RHD, отличается от кодируемого геном RHceпо величине [208, 233, 418, 496, 720]. Такое различие существенно для иммунной системы реципиента. При делеции гена RHDкодируемое им веще­ство Rh не производится, поэтому вводимый при гемотрансфузии антиген прак­тически не имеет у реципиента какого-либо эквивалента. Иммунный ответ осо­бенно сильно проявляется у лиц с фенотипом -D- и Rh ,,, у которых часть или все антигены Rh отсутствуют. В этом случае антигенные различия реципиента и донора, даже если последний Rh-, очень велики.

На основании результатов молекулярно-биологических исследований, сви­детельствующих о незначительных различиях в структуре минорных резус-антигенов С, с, Е, е, а также основываясь на данных статистики, показываю­щих, что частота антител к этим антигенам невысока, некоторые исследовате­ли предлагают пересмотреть существующее положение о резус-положительных и резус-отрицательных донорах. В частности, предлагается относить к резус-отрицательным донорам лиц D-, содержащих антигены С и Е, и узаконить трансфузии крови Cde, cdE и CdE резус-отрицательным реципиентам. По их мнению, такой подход, позволит расширить ресурсы донорской крови Rh-, сэ­кономит значительные средства, затрачиваемые на дополнительное типирова-ние доноров по факторам С и Е, и связанные с этим другие расходы.

Хотя мировое сообщество трансфузиологов в целом не приняло этот предло­жение, оно не лишено здравого смысла.

Придерживаясь общепринятого положения, предписывающего относить к резус-отрицательным донорам только лиц, не содержащих факторов D, С и Е, мы все же рассмотрим его по существу.

В начале 50-х годов прошлого столетия сложилось представление о том, что для реципиентов cde антигены С и Е столь же иммуногенны, как D. Это представление базировалось на данных о высокой частоте встречаемости ан­тител анти-С и анти-Е в виде комбинированных сочетаний: анти-DC и анти-DE. Создавалась видимость высокой иммуногенности этих факторов и отсю­да опасение, что для реципиентов D-C-E- антигены С и Е будут также имму­ногенны. В действительности чистые антитела к факторам С и Е без анти-D-антител встречаются редко, что свидетельствует об их невысоких иммуноген-ных свойствах.

Для того чтобы еще больше обезопасить резус-отрицательных реципиен­тов от возможной аллоиммунизации, им переливают эритроциты, не содержа­щие этих факторов. Предпочтение такой тактики было в значительной степени произвольным, поскольку объективная статистика, подтверждающая правомер­ность такого подхода, отсутствовала.

В то же время реципиентам Rh+ переливают эритроциты, которые в 20-30 % случаев не идентичны по антигенам С и Е, не опасаясь при этом вызвать алло-иммунизацию. Вряд ли такой подход можно признать правильным, поскольку реципиенты Rh+, хотя и редко, но все же иммунизируются минорными анти-енами с, С , С, Е и е. В табл. 4.2 представлены данные, характеризующие сте­пень иммуногенности минорных Rh-антигенов.

Так, Huestis (1971) и Schorr (1976) выполнили более 1000 переливаний эри­троцитов 225 реципиентам, фенотип которых различался по антигенам С и Е от фенотипа перелитых эритроцитов и лишь в одном случае отметили образование анти-Е-антител в комбинации с анти-KELl-антителами. В другом случае, где сле­довало ожидать появление анти-С-антител, выработались анти-KELl -антитела.

У 9 реципиентов Rh~, имевших анти-О-антитела, переливание эритроцитов С+ и Е+ привело в одном случае к образованию анти-С-антител, в другом - анти-Е-антител (Schorr, 1976). Образование этих антител могло быть обусловлено вторич­ным иммунным ответом. Первичная иммунизация этими антигенами могла прои­зойти ранее, когда реципиентам была перелита кровь Rh+, и они наряду с иммуни­зацией D-антигеном, могли быть первично сенсибилизированы к факторам С и Е.

У одного донора, содержащего анти-С ^антитела, при попытке повысить их титр реиммунизацией эритроцитами CwDe мы наблюдали появление анти-е-антител, выработавшихся, по-видимому, также вторично.

Van Loghem и соавт. (1953), желая повысить титр анти-е-антител реимму­низацией человека cDE эритроцитами cde, вместо усиления анти-е получили анти-KELl -антитела в комбинации с анти-Fy3.

Таблица 4.2

Частота образования антител к минорным антигенам Rh-Hr при намеренной иммунизации

Реципиенты

Перелито эритроцитов (доз)

Количество лиц,

выработавших

антитела

Источник

группа

всего

фенотип

всего

фенотип

специфичность

всего

ожи­даемая

фактическая

Без

предсуществующих

антител

4

cde

583

30

8

cde Cde cdE

С

Huestis, 1971

66

cDe, cDE

136

Cde

1

С

Анти-К

Schorr, 1976

44

CDe, cDe

71

cdE

1

Е

Анти-Е+К

64

cde

134

Cde

С

47

cde

89

cdE

Е

С предсуществующими антителами

5

cde с анти-D

94

Cde

1

С

Анти-С

4

cde с анти-D

49

cdE

1

Е

Анти-Е

27

CDe санти-Е

Многократные трансфузии

cde

5

с

Анти-с

Shirey,

Edwards, Ness,

1994

1

cDE с

анти-С w

Инъекции для

повышения титра

анти-С*

CwDe

1

CW

Анти-е

СИ. Донское и др., 2003**

1

cDE с анти-е

Инъекции для

повышения титра

анти-е

cde

1

е

Анти-K+Fy

van Loghem, Harkink, van der Hart, 1953 |

Реципиенты

Перелито эритроцитов(доз)

Количество лиц,

выработавших

антитела

Источник

группа

всего

фенотип

всего

фенотип

специфичность

всего

ожи­даемая

фактическая

Иммунизация нативными эритроцитами

2

cDE

 

cde

е

van

Loghem,

Harkink, van

der Hart, 1953

32

cDe

Несколько курсов иммунизации

Cde cdE

Е

Jones,

Diamond,

Allen, 1954

19

CDe

То же

cde

с

Wiener, 1949

2

cde

п

Cde

С

P.C. Сахаров,

1975 [98], 1997

[96]

2

cde

it

cdE

Е

2

CDe

и

cde

с

2

cDE

it

cde

е

Иммунизация энзимированными эритроцитами

2

CDe

и

cDE

1

Е

Анти-D парциальные

3

cde

и

Cde

3

С

Анти-C+D

2

cDE

а

CDe

2

С,е

Анти-К

2

cDE

11

cde

1

е

Анти-е

2

CDe

11

cDE

2

Е

Анти-Ё

1

cDe

11

CDe

1

С

Анти-К

3

cDe

11

Cde

С

B.A. Мороков, 1996**

2

CDe

11

cDE

Е

2

CDe

11

cde

с

2

cDE

11

cde

е

3

cDEk

11

К

1

К

Анти-К

* Иностранные авторы цитированы по сводке Issitt и Anstee [374].

** По материалам лаборатории стандартизации групп крови ГНЦ РАМН.

Shirey, Edwards и Ness (1994) при многократных трансфузиях реципиентам Rh+ резус-отрицательных эритроцитов в 5 из 27 случаев отметили образование антител анти-hr' (с), что свидетельствует о необходимости переливания резус-положительным реципиентам эритроцитов, идентичных по hr' (с)-антигену, как это предусмотрено в России ныне действующими нормативными документами (приказ МЗ РФ № 2 от 09.01.98 г. [61]).

При искусственной иммунизации добровольцев cde/cdeрезус-положи­тельными эритроцитами практически все, за редким исключением, вырабаты­вали анти-Б-антитела. В противоположность этому выработка антител анти-С ;$Г|Шти-Е при искусственной иммунизации как резус-отрицательных, так и везус-положительных людей представляет казуистику. Даже продолжительная искусственная иммунизация нативными и энзимированными эритроцитами не позволяла получить эти антитела (Р.С. Сахаров [96, 98]).

В опытах по иммунизации, когда инъекции продолжались в течение полу­тора лет, Jones, Diamond и Allen (1954) не смогли стимулировать продукцию анти-С и анти-Е ни у одного из 32 человек D+.

Очень часто иммунизация, предпринятая с целью получения антител анти-С и анти-Е, приводит к выработке антител анти-KELl или анти-hr' (с). Об этом свидетельствуют многочисленные данные, полученные отечественными иссле­дователями Т.Г. Соловьевой, А.Г. Башлай, Р.С. Сахаровым, В.А. Мороковым, И.С. Липатовой и другими, занимавшимися направленной искусственной им­мунизацией с целью получения моноспецифических тестовых сывороток.

Анти-С-антитела хотя и редки, но значительно чаще образуются у резус-отрицательных людей, чем у резус-положительных, что еще раз подтвержда­ет правильность современной трансфузиологической тактики, предусматрива­ющей переливание резус-отрицательным реципиентам эритроцитов, лишенных антигенов С и Е. Сложившуюся повсеместно практику переливания эритроци­тов Rh+ резус-положительным реципиентам без учета факторов С и Е вряд ли можно считать идеальной, поскольку это приводит к аллоиммунизации реципи­ентов факторм hr' (с), который иммуногенен для гомозигот CDe/CDeи обуслов­ливает около 3 % посттрансфузионных осложнений.

Итак, многие аргументы убеждают в необходимости переливать эритроци­ты, идентичные по основным антигенам системы Rh-Hr: D, С, Е, с, е. К этому перечню необходимо добавить антиген Cw, частота сенсибилизации к которому составляет 1-2 % [40].

Роль Rh-антигенов в биологии человека неясна. Gahmberg и соавт. [296], Ridgwell и соавт. [566], Paradis и соавт. [517] полагают, что резус-антигены явля­ются лишь структурным элементом мембраны эритроцитов. Число молекул по­липептида Rh и гликопротеина Rh на 1 эритроцит достигает 200 тыс. (Hughes-Jones и соавт. [364]), что делает их основными мембранными белками.

Вещество Rh присутствует только в эритроцитах и, по-видимому, выполняет определенную функцию, специфичную именно для этих клеток.

По данным Schmidt и соавт. [5] и Sturgeon [638], эритроциты людей с фено­типом Rhnull, при котором, как известно, отсутствуют Rh-антигены, имеют эл­липсоидную форму. Концентрация анионов в мембране снижена (Ballas и со­авт. [151]). Эритроциты часто дегидратированы из-за повышенного транспорта воды через клеточную мембрану (Lauf, Joiner [411], Nash, Shojania [504]). Срок их приживления invivoменьше, чем обычных эритроцитов [598].

Ridgwell и соавт. [565] нашли, что аминокислоты Glu 21 и Glu 146 в транс­мембранной части Rh-полипептида и аминокислоты Glu 13 и Glu 148 в транс­мембранной части Rh-гликопротеина обеспечивают движение катионов через мембрану эритроцита и относятся к структурам, которые подобно аквапорину-1 (антигену Colton) являются транспортерами воды в клетку.

Kuypers и соавт. [405] установили, что в эритроцитах Rhnul) наружный липид-ный слой поврежден, увеличено количество фосфатидилэта"ноламина, ускорено трансмембранное продвижение фосфатидилхолина.

У людей Rhnull нередко наблюдают умеренную компенсированную гемолити­ческую анемию [151,153,226, 338, 353, 501].

На основании приведенных данных можно сделать вывод, что при отсут­ствии антигенного комплекса Rh, который не полностью восполняется другими мембранными белками, эритроциты лиц Rhnul| функционально неполноценны.

Rh-ассоциированный гликопротеин (RhAG) имеет высокую степень гомоло­гии (примерно на 40 %) с АМТ-протеином (аммонийтранспортный белк), и есть все основания полагать, что молекулы Rh-комплекса участвуют в транспорте аммония (Marini и соавт. [461], Westhoffn соавт. [702], Hemker и соавт. [345]).

Прослеживается определенная связь системы резус с газотранспортной функци­ей эритроцитов (Huang и соавт. [359], Soupene и соавт. [622]). Трансмембранные до­мены Rh-полипептида и ассоциированные с ними домены Rh-гликопротеина, веро­ятно, образуют каналы, по которым осуществляется переход С2 в клетку и из нее.

Установлено, что анти-НЬА-антитела чаще встречаются у людей Rh-, чем у Rh+ (Ю.М. Зарецкая [55], СИ. Донсков [37,46]). Частота резус-отрицательных лиц высока среди доноров, имеющих антистафилококковые антитела (СИ. Донсков и др. [45]). Известно также, что у лиц Rh- чаще присутствуют антибактериальные и антивирусные антитела и в более высоком титре, чем у людей Rh+.

У резус-положительных людей способность лимфоцитов к бласттрансфор-мации под действием фитогемагглютининов выше, чем у резус-отрицательных. Можно предположить, что люди, не имеющие гена D, более склонны к выработ­ке антител, т. е. к иммунному ответу гуморального типа. Люди, имеющие ген D, реже вырабатывают антитела и, очевидно, реагируют на поступающие в их ор­ганизм антигены в большей мере по клеточному типу, без выработки антител. Хотя гены RHи гипотетические гены иммунного ответа IRне имеют четких ас­социаций и представляют собой различные структуры, некоторая взаимосвязь резус-принадлежности и способности образовывать антитела все же прослежи­вается (см. Влияние резус-принадлежности на антителогенез).

Gloria-Bottini и соавт. [308] обнаружили связь фенотипа Rh со степенью гликемии и уровнем гликозилирования гемоглобина при диабете. Среди 278 обследованных авторами больных инсулиннезависимым диабетом концентрация глюкозы и уровень гликозилирования гемоглобина НЬА(1с) были существенно выше у лиц CcDEe, чем у лиц ccddee. Аналогичную взаимосвязь фенотипа Rh с гемоглобином НЬА(1с) на­блюдали при обследовании 53 детей инсулинзависимым диабетом. Авторы пола­гают, что Rh-протеины, являясь структурным компонентом мембраны эритроцита, влияют на транспорт глюкозы в клетку и гликозилирование гемоглобина.

David и Jenkins [254], сравнивая результаты фенотипирования 31 больно­го глаукомой и 70 здоровых лиц (среди европейцев), нашли выраженную ассо-.. 1щацию открытоугольной глаукомы с антигеном D. По другим 13 антигенным системам эритроцитов и сывороточных белков, по которым проводили феноти-пирование указанных больных, каких-либо ассоциаций не выявлено. При фено-типировании 61 больного глаукомой и 238 здоровых лиц по 18 антигенным си­стемам (среди негров) никаких ассоциаций не установлено.

Valenzuela и Неггега [674] отметили, что лица CDe/CDeобладают значитель­но большей устойчивостью к заболеванию тифоидной лихорадкой, вызывае­мой сальмонеллами, в то время как лица cDE/cDE, особенно cDE/cde, наоборот, предрасположены к этому заболеванию. Повышенной устойчивостью к тифо­идной лихорадке обладали люди, имевшие группу крови В(Ш), а также гетеро-зиготы MNSsпо сравнению с гомозиготами SS. Даже если они и заболевали, за­болевание протекало в легкой форме.

По данным многих авторов (В.А. Аграненко и др. [6, 93], А.Г. Башлай [14], М.А. Умнова [111,112], СИ. Донсков [41], Л.С. Бирюкова [19], Н.В. Минеева [78], В.М. Нерсисян [83], А.А. Рагимов и Н.Г. Дашкова [91, 92], MoUison и соавт. [476]), около 50% случаев постгрансфузионных осложнений и примерно 80% случа­ев гемолитической болезни новорожденных обусловлены Rh (Р)-разновидностью резус-фактора. В силу этого людей (потенциальных реципиентов) делят на резус-положительных и резус-отрицательных по наличию в их эритроцитах именно этой разновидности резус-антигена. Тех, у кого антиген D присутствует, относят к резус-положительным, а тех, у кого он отсутствует, - к резус-отрицательным.

Иной подход используют при оценке резус-принадлежности доноров. В том случае, если донор содержит одну из трех разновидностей резус-анти­гена [Rho (D), rh' (С) или rh" (E)] его причисляют к резус-положительным. Соответственно резус-отрицательными донорами считают только тех лиц, в эритроцитах которых нет ни одной из указанных разновидностей. Такое разде­ление доноров на резус-положительных и резус-отрицательных позволяет ис­ключить возможность сенсибилизации реципиента к резус-фактору при пере­ливании компонентов крови и тем самым в значительной степени снизить риск посттрансфузионных осложнений.

Разновидности rh' (С) и rh" (E) редко присутствуют в эритроцитах по отдельно­сти. По данным М.А. Умновой и P.M. Уринсон [116], лица, в эритроцитах которых содержится только rh' (С), встречаются в 2,14 % случаев; rh" (Е)-разновидность - в 0,27 %; сочетание rh' (С) и rh" (E) - в 0,08 % случаев. В подавляющем большинстве случаев (более чем в 95 %) эти разновидности представлены в эритроцитах в ком­бинации с Rho (D)-aHrnreHOM, поэтому в повседневной практике у реципиентов и в большинстве случаев у доноров определяют только Rh (В)-разновидность, есте­ственно, если группа крови донора и реципиента совпадает.

Пациентам Rh- переливают эритроциты Rh-. Переливание крови Rh+ и ее компонентов реципиентам Rh- не практикуется из-за высокой иммуногенности фактора D. Если реципиенту Rh- перелили кровь Rh+, перелитые эритроциты приживутся нормально и выполнят свою лечебную заместительную функцию. Однако, как показывает практика, около 80 % пациентов Rh-, получивших 1-2 дозы эритроцитов Rh+, образуют анти-Б-антитела, которые при последующей трансфузии эритроцитов Rh+ вызывают острый гемолиз.

Поскольку эритроциты Rh+, однократно перелитые лицам Rh-, нормаль­но приживают, возникает вопрос: почему кровь Rh+ не используют для пер­вой трансфузии реципиентам Rh-, и далее, если у реципиента образовались анти-Б-антитела, его не переводят на трансфузии крови Rh-? Вопрос далеко не праздный, поскольку дефицит крови Rh- возникает повсеместно. Issitt и Anstee [374], всесторонне проанализировавшие этот аспект, приводят следующие аргу­менты в пользу того, почему нельзя переливать кровь Rh+ пациентам Rh-.

Во-первых, если анти-Б-антитела образовались у женщины, они могут вызвать помимо постгрансфузионного осложнения гемолитическую болезнь новорожден­ного. Как установили Т.А. Ичаловская [62], Giblett [299] и другие авторы, дети с ге­молитической болезнью новорожденных, как правило, рождаются у матерей Rh-, имеющих анти-Б-антитела в сыворотке. Самая тяжелая форма гемолитической бо­лезни, приводящая к внутриутробной смерти плода, чаще всего обусловлена анти-D-антителами, которые нередко комбинируются с антителами к факторам С, Е и G системы резус. Женщины Rh-, иммунизированные D-антигеном вследствие транс­фузий крови Rh+, часто оказываются неспособными родить живого ребенка.

Во-вторых, после первой трансфузии крови Rh+ реципиенту Rh- имеется 80 % вероятности того, что из-за наступившей сенсибилизации при следующей трансфузии ему может быть перелита только кровь Rh-. Нельзя искусственно ставить реципиента Rh- в критическую ситуацию, когда для спасения жизни он не сможет получить кровь Rh+, если вдруг не окажется крови Rh-.

В-третьих, трудно быть абсолютно уверенным, что человек Rh- без резус-антител в сыворотке никогда раньше не получал компонентов крови Rh+. Применение крови Rh+ для лечения лиц Rh- может остаться для них незаме­ченным, например внутримышечная гемотерапия в детском возрасте. У реци­пиента, имеющего анти-Б-антитела на грани выявления (незавершенный ан-тителогенез), высока вероятность отсроченной посттрансфузионной гемоли­тической реакции. Известны примеры, когда женщины Rh-, родившие ребен­ка Rh+, дали первичный иммунный ответ на Б-антиген и, хотя анти-Б-антитела в их сыворотке на момент трансфузии не выявлялись, переливание крови Rh+ привело ко вторичной иммунизации и отсроченной трансфузионной реакции. Классические случаи такого типа описаны Mollison и соавт. [476].

К аргументам против применения крови Rh+ для переливания реципиен­там Rh- можно добавить существование так называемых спонтанных резус-антител у лиц, никогда не контактировавших с кровью Rh+ и ее компонентами Ijple имевших беременностей. Эти антитела редки и значение их в трансфузио-1богии прямо не доказано, однако можно полагать, что их присутствие так или иначе способствует ускоренному разрушению перелитых эритроцитов и снижа­ет лечебный эффект трансфузии.

Следует подчеркнуть, что, несмотря на запрет переливания крови Rh+ ре­ципиентам Rh-, в исключительных случаях такая трансфузия оправдана. Если нет донорской крови Rh-, перелитые эритроциты Rh+ нормально функцио­нируют в кровяном русле реципиента Rh-, у которого еще нет анти-Б-антител. Неиммунизированному пациенту Rh- можно перелить кровь Rh+ по жизнен­ным показаниям при отсутствии крови Rh- и невозможности получить ее в бли­жайшее время. Следует также учитывать, что в ситуации, требующей массивной трансфузии, перелитые эритроциты теряются с кровотечением. Если кровь Rh-имеется в ограниченном количестве, а неиммунизированному D-антигеном па­циенту требуется массивная трансфузия, ее можно начать с крови Rh+, сохранив запас крови Rh- для последующих трансфузий курируемому пациенту и другим больным, нуждающимся в переливании резус-отрицательной крови: новорож­денным с гемолитической болезнью, родильницам, имеющим анти-О-антитела, резус-отрицательным девушкам и молодым женщинам.

Вместе с тем отсутствие крови Rh- не может служить оправданием от­каза от попыток организовать ее получение. Решение о переливании резус-положительной крови резус-отрицательному пациенту не должно приниматься с легкостью и его необходимо убедительно аргументировать.

Несмотря на существующее в трансфузиологии правило переливать кровь, идентичную по антигену D (D- —> D-; D+ —> D+), трансфузия D- —kD+ в слу­чае дефицита крови Rh+ не может рассматриваться как серьезное нарушение. Лица Rh+, так же как и Rh-, содержат антигены с и е, за исключением гомози­гот С/С и Е/Е, частота которых, однако, не столь велика, как гетерозигот С/с и Е/е. в связи с этим многие пары донор - реципиент при трансфузии D- —> D+ являются идентичными по с и е, а неидентичные комбинации крайне редко при­водят к аллоиммунизации, поскольку антигены сие обладают несоизмеримо меньшей иммуногенной активностью по сравнению с антигеном D. Кроме того, минорные антигены резус - С, Cw, E, с и е - имеют высокую степень гомоло­гии, и антитела к этим антигенам встречаются реже, чем к антигену D.

Изложенное положение, однако, не следует рассматривать как призыв пере­ливать реципиентам Rh+ кровь Rh-. Напротив, современная трансфузиологи-ческая доктрина основывается на принципе: переливать кровь, идентичную по максимальному числу антигенных факторов.

Аллоиммунизация лиц Rh- антигеном D может происходить не только при переливании эритроцитов. Концентраты тромбоцитов из крови доноров Rh+ могут также стимулировать продукцию анти-Б-антител у реципиентов Rh-, од­нако не за счет тромбоцитов, которые не содержат D-антигена, а исключительно ,.М счет примеси эритроцитов, остающихся в тромбоцитной взвеси.

Риск аллоиммунизации D-антигеном при многократном переливании тромбо­цитов от резус-положительных доноров резус-отрицательным реципиентам чрез­вычайно высок и может достигать 100 %. Даже предварительное введение имму­ноглобулина антирезус не всегда предотвращает сенсибилизацию. Хотя некото­рые авторы полагают, что тромбоциты несут на себе некоторое количество анти­гена D и иммунизация обусловлена именно тромбоцитами, многие факты свиде­тельствует об обратном. В частности, тромбоциты доноров Rh+, перелитые ли­цам Rh-, имевшим анти-О-антитела, нормально выживали invivo(Mollison и со-авт. [476]), а адсорбция анти-О-антител тромбоцитами лиц Rh+, отмечавшаяся некоторыми авторами, по-видимому, имела неспецифических характер.

Castilho и соавт. [200] наблюдали 48 пациентов D-, которым переливали кон­центрат тромбоцитов, полученных преимущественно от доноров D+. У 4 паци­ентов (8,33 %) появились анти-О-антитела, у 1 - комбинированные с анти-Е-антителами. У 2 реципиентов, 3- и 5-летнего возраста, антитела появились по­сле 10-й и 21-й трансфузии тромбоцитов соответственно. У 2 других реципиен­тов (14 и 25 лет) антитела появились после 60-й и 105-й трансфузии.

Строгой зависимости между частотой появления анти-О-антител и объемом введенного иммуногена не обнаружено.

Pollack (цит. по Issitt, Anstee [374]) сообщил, что у 50 % лиц D-, получивших инъекцию 25 мл эритроцитов D+, образовались анти-О-антитела.

Davey и соавт. (по той же сводке) выявили анти-О-антитела у 33 % реци­пиентов D-, получивших по 40 мл эритроцитов D+. Если иммунизирующая доза была меньше, значительное число лиц D- все же образовывало антитела. Mollison и соавт. [476] обнаружили анти-О-антитела у 15 % добровольцев D-, получивших инъекцию 1 мл эритроцитов D+.

В некоторых исследованиях были сделаны повторные инъекции небольшо­го количества (иногда по 0,1 мл на инъекцию) эритроцитов D+ добровольцам D-. В большинстве случаев было показано, что этот способ стимуляции анти-D-антителогенеза был так же эффективен, как и трансфузия целой дозы крови Rh+. Примерно у 70 % добровольцев образовывались анти-О-антитела.

Точно также, очевидно, небольшая примесь эритроцитов D+ в концентра­тах тромбоцитов и других компонентах крови, переливаемых пациентам D-, может индуцировать выработку анти-О-антител. В отдельных случаях свежеза­мороженная плазма вызывала сенсибилизацию к резус-фактору за счет содер­жащейся в ней стромы эритроцитов. Описан редкий случай выработки анти-О-антител после переливания криопреципитата, полученного от доноров Rh+, резус-отрицательному больному гемофилией.

Попытка снизить уровень антител плазмообменом нередко приводит к об­ратному эффекту - повышению концентрации антител в кровяном русле. Это происходит в тех случаях, когда изымаемую плазму замещают раствором альбу­мина или другими растворами, не содержащими иммуноглобулинов класса IgG, к которому относится большинство резус-антител. Относительное снижение при обменном плазмаферезе уровня IgG в крови приводит к компенсаторному выбросу иммуноглобулинов, в том числе резус-антител, из депо и их повышен­ному синтезу. После серии обменных плазмаферезов титр антител снижается, а через несколько дней может существенно возрасти. Стабильное снижение титра антител происходит при замещении изъятой плазмы нативнои плазмой доноров D-, содержащей количество IgG, адекватное изъятому.

У женщин, имевших больных гемолитической болезнью новорожденных и в настоящее время беременных плодом Rh+, можно снизить уровень анти-D-антител с помощью плазмообмена. Однако на эту процедуру следует решаться лишь в крайних случаях, когда не остается выбора.

Аллоиммунизация к резус-фактору в течение беременности бывает редко. В основном сенсибилизация происходит во время родов, когда в кровоток роже­ницы попадает значительное количество эритроцитов плода - 50 мл и более.

Продукция анти-О-антител возможна также после пересадки почки, костей, костного мозга и других тканей, если последние недостаточно отмыты от эри­троцитов.

Особый интерес представляют случаи выявления резус-антител у людей, не имевших антигенной стимуляции [75], а также у реципиентов после транс­плантации им костного мозга сенсибилизированных к резус-антигену доноров. По одному из таких случаев, наблюдавшихся нами [47, 48], приведено выше (см. Происхождение антиэритроцитарных антител).

Как указывалось выше, появление резус-антител может быть следствием трансплацентарного переноса при родах или прямого переливания антитело-продуцирующих клеток.

Подобный механизм возникновения спонтанных антител, по-видимому, не­редкое явление. В одном весьма необычном случае [374] транзиторную продук­цию анти-Б-антител наблюдали у реципиентов Rh+, получивших трансфузии крови от донора Rh-, иммунизированного D-антигеном.

Посттрансфузионные реакции могут возникать при переливании не только резус-положительных эритроцитов лицам, имеющим резус-антитела, но и пре­паратов и сред, содержащих резус-антитела, резус-положительным реципиен­там. Не единичны случаи гемолитической реакции у новорожденных, которым ошибочно был введен иммуноглобулин антирезус, предназначавшийся матери, а также казуистические случаи постгрансфузионных осложнений, когда реци­пиентам Rh+ переливали цельную кровь от нескольких доноров, среди которых были как Rh+, так и Rh- с высоким титром анти-О-антител. Подобные наблю­дения описаны А.Е. Скудицким [101].

Известны случаи иммунизации резус-антигеном в группах наркоманов в ре­зультате инъекции наркотиков, разведенных кровью одного из участников группы.

Интересен недостаточно изученный в настоящее время иммунологиче­ский феномен респондерства и нереспондерства. Несмотря на высокую имму-ногенную активность антигена D, примерно 8-10% людей Rh- не образуют aHTH-D-антител даже после многократных контактов с D-антигеном. Эти лица - нереспондеры (неотвечающие) в отличие от респондеров (отвечающих выработкой антител), по-видимому, лишены способности образовывать резус-антитела. Некоторые исследователи отмечают, что состояние нереспондерства, толерантности к D-антигену, у людей может быть утрачено после переливания им крови Rh+ или их курсовой иммунизации эритроцитами Rh+. Однако из-за отсутствия критериев отбора респондеров и нереспондеров доказательная база существования этого явления не столь убедительна.

Не обнаружено ассоциации респондерства с антигенами HLA-A, HLA-B, HLA-DR, HLA-DQ, которые, как известно, участвуют в распознавании антигена и инициации иммунного ответа.

Не удалось также выявить какой-либо корреляции между уровнем компонен­тов комплемента С2, С4а, С4Ь, аллотипами иммуноглобулинов и способностью вырабатывать резус-антитела.

Состояние респондерства и нереспондерства остается загадкой. Однако, не­сомненно, что это не случайное явление, и оно должно иметь под собой мате­риальную основу. Некоторые авторы не исключают, что один и тот же человек в один период жизни может быть респондером, в другой - нереспондером.

Оригинальное объяснение толерантности в отношении резус-антигена вы­двинуто П.Н. Косяковым [69] и Р.А. Авдеевой [3]. Эти исследователи разделили женщин Rh-, имевших резус-антитела, на 2 группы. К 1-й группе были отнесе­ны женщины, матери которых были резус-отрицательными, ко 2-й - женщины, матери которых были резус-положительными. При сравнении групп оказалось, что частота сенсибилизированных женщин, имевших матерей Rh-, превыша­ла частоту сенсибилизированных, имевших матерей Rh+. Подобные наблюде­ния в начале 1950-х годов были проведены независимо Brambell и Mitchison (пит. по Race, Sanger [544]). Авторы считают, что во время внутриутробно­го развития несформировавшаяся еще иммунная система плода воспринимает резус-антиген как свой. Состояние толерантности к Rh-антигену сохраняется во взрослом организме, поэтому такие люди чаще нереспондеры. В тех случа­ях, когда плод не контактировал с Rh-антигеном, толерантность к нему соответ­ственно не возникает. Такие люди проявляют себя как респондеры и легко им­мунизируются при первом же контакте с Rh-антигеном.

Исходя из данных, полученных П.Н. Косяковым [69] и RA. Авдеевой [3], формирование толерантности к резус-антигену в период внутриутробного раз­вития плода Rh- в организме матери Rh+ действительно имеет место и, по-видимому, возникает в отношении других аллоантигенов.

Зная частоту распределения резус-фактора в популяции, можно подсчитать, что 85 % людей Rh- имеют матерей Rh+, что составляет 12,7 % населения. Примерно такова же частота нереспондеров - 8-10 %.

Вопрос о существовании феномена приобретенной иммунологической толерантности к резус-фактору, так же как и механизм ее возникновения, окончательно не выяснен. Недостаточно изучены естественные эндогенные ин­гибиторы антителообразования, которые, по-видимому, могут влиять на состоя­ние респондерства или нереспондерства в отношении резус-антигена.

 

Открытие антигенов системы резус связано с именем Карла Ландштейнера и двух его учеников, Александра Винера и Филиппа Левина.

В 1940 г. Landsteiner и Wiener [408] обратили внимание на то, что сыворотки морских свинок и кроликов после иммунизации эритроцитами обезьян Macacusrhesusагглютинируют эритроциты не только макак, но и эритроциты людей. Антитела, содержащиеся в этих сыворотках, отличались от анти-М, анти-N и анти-Р, уже открытых к тому времени Ландштейнером совместно с Левиным, и, по всей видимости, выявляли новый антиген.

Анализируя результаты исследований, Landsteiner и Wiener [409] пришли к заключению, что эритроциты человека содержат антиген, аналогичный имею­щемуся в эритроцитах Macacusrhesus. Этот антиген, встречающийся у 85 % ев­ропеоидов, был назван ими резус-фактором. Эритроциты, содержащие резус-фактор, авторы обозначили символом Rh+, не содержащие резус-фактора, -Rh-, а антитела соответственно - анти-Rh, или антирезус.

Вскоре, в 1941 г., Wiener и Peters [711] обнаружили подобные антитела в сыворотке людей, у которых развились тяжелые осложнения после повтор­ного переливания им одногруппной крови. Двое из них умерли. Эритроциты пострадавших не реагировали с сывороткой антирезус, т. е. были резус-отрицательными. Эти наблюдения позволили исследователям сделать вывод о возможной аллоиммунизации резус-отрицательных реципиентов повторными переливаниями резус-положительной крови и о важной роли резус-фактора в развитии посттрансфузионных осложнений.

Годом раньше Levine и Stetson [432] описали случай тяжелого постгрансфу-зионного осложнения у родильницы. Женщина родила ребенка с гемолитиче­ской болезнью новорожденного, и по причине анемии ей была перелита кровь мужа, совместимая по АВО. Авторы обнаружили в сыворотке женщины необыч­ные антиэритроцитарные антитела, которые не были похожи на анти-М, анти-N и анти-Р. Однако причина гемолитической болезни, как и посттрансфузионного осложнения, не была расшифрована. Антитела имели слабую активность, и авто­ры не связали их присутствие с гемолитической реакцией у матери и ребенка.

Впоследствии Левин, Стетсон и другие авторы, ретроспективно проана­лизировавшие этот случай, констатировали, что на момент исследования не существовало еще методов идентификации неполных резус-антител (эти ме­тоды появились в 1945 г.), поэтому они смогли выявить лишь полные антите­ла - IgM. Более агрессивные неполные антитела (IgG), которые, по-видимому, и обусловили симптомокомплекс гемолитического осложнения у женщины и ее ребенка, авторы не обнаружили. Лишь много лет спустя сохранившийся об­разец сыворотки крови этой женщины, по имени Mary Seno, был исследован Rosenfield, который нашел в нем активные анти-Б-антитела IgG.

В 1941 г. Левин с сотрудниками (Levine et al. [430, 433]), проанализировав несколько случаев гемолитических реакций у новорожденных и их матерей, убедительно показали, что в основе гемолитической болезни новорожден­ных лежит иммунологическая несовместимость матери и плода. Основанием для такого вывода послужили результаты экспериментов, свидетельствую­щие о том, что антитела, присутствующие в сыворотке матерей, агглютини­руют эритроциты новорожденных и эритроциты их отцов. Согласно концеп­ции, сформулированной Левиным, антитела матери, подобные тем, что описа­ли Ландштейнер и Винер, образуются в результате иммунизации антигенами плода, унаследованными им от отца. Затем антитела проникают через плацен­ту в организм плода и вызывают повреждение его эритроцитов и, как теперь известно, кроветворных тканей.

Многочисленные последующие исследования, проведенные в этом направ­лении различными авторами, полностью подтвердили правильность выводов Левина и сотрудников.

Открытие резус-фактора и его роли в этиологии и патогенезе гемолитиче­ской болезни новорожденных явилось крупным достижением иммуносероло-гической школы Карла Ландштейнера, сопоставимым по значению для меди­цины и биологии с открытием групп крови АВО. Клиническая практика обо­гатилась новыми методами диагностики, профилактики и лечения синдромов, обусловленных групповыми факторами крови. Существенный стимул для раз­вития получили трансфузиология, акушерство, судебная медицина, генетика, антропология.

Вслед за Винером исследователи в других странах, повторив его экспери­менты с иммунизацией различных животных, получили сыворотки антирезус и использовали их для прикладных и исследовательских целей. В нашей стра­не P.M. Уринсон [120] приготовила оригинальные сыворотки, которые некото­рое время успешно применяли для определения резус-принадлежности доноров и больных. Оригинальность этих реактивов заключалась в том, что они были получены из крови морских свинок, иммунизированных эритроцитами павиа­нов гамадрил. После адсорбции эритроцитами человека А(П) Rh- и В(Ш) Rh_ сыворотки имели титр aHTH-Rho 1 : 10-1 : 80 и были вполне пригодны для ис­пользования. Решение практической задачи - получение диагностических сы­вороток - позволило сделать важный для антропологии вывод о том, что гама­дрилы, как и макаки, содержат антиген, аналогичный таковому у человека.

Антирезус-антитела получила М.А. Умнова с сотрудниками [ИЗ, 114], им­мунизируя морских свинок нативными эритроцитами и стромой эритроцитов обезьян Macacusrhesusи человека. Куры и кролики оказались не способными вырабатывать резус-антитела в ответ на инъекции эритроцитов.

По мере накопления данных выяснилось, что сыворотки антирезус, полу­ченные от иммунизированных животных и аллоиммунизированных людей, раз­личаются по своей специфической направленности и открывают, хотя и близ­кие по частоте встречаемости, но разные антигены. Так, Fisk и Foord [285] нашли, что сыворотки животного происхождения агглютинировали резус-отрицательные эритроциты новорожденных. В то же время антитела антире­зус человека не реагировали с эритроцитами обезьян Macacusrhesus. Murray и Clark [500] получили антитела со специфичностью антирезус, вводя животным резус-отрицательные эритроциты. Имелись и другие указания на то, что анти­тела животных и человека не идентичны. Как впоследствии выяснилось, млеко­питающие других видов не способны продуцировать антитела к антигенам ре­зус. В итоге проверочных исследований было установлено, что сыворотки жи­вотных выявляют не резус-антиген, а другой антиген, который по предложению Левина был назван LW (аббревиатура от Landsteiner, Wiener). Таким образом, сыворотки человеческого происхождения не являются антирезусными в абсо­лютном смысле этого определения, поскольку не направлены к антигену, име­ющемуся в эритроцитах макак. Однако в литературе к тому времени было опу­бликовано много работ, посвященных резус-фактору, и первоначальное назва­ние этого антигена было сохранено.

Вопрос о том, кто открыл резус-фактор, поднимался неоднократно. Как признает большинство авторов (Race и Sanger [544], Mollison и соавт. [476], П.Н. Косяков [69, 70]), это открытие явилось результатом совокупного труда нескольких групп исследователей, среди которых в первую очередь выделяют имена Винера и Левина.

Целенаправленное изучение сывороток крови больных, перенесших пост-трансфузионные осложнения, и женщин, родивших детей с гемолитической бо­лезнью новорожденных, позволило в короткий срок открыть основные антите­ла, относящиеся к системе резус.

Wiener [708] выявил у одного такого больного антитела, реагирующие с эри­троцитами примерно 70 % людей, в то время как известные резус-антитела да­вали положительные реакции в 85 % случаев. Прослеживалась определенная связь нового фактора с уже известным антигеном, позволившая Винеру отнести его к системе резус. Так был открыт антиген rh' (С).

Levine в 1942 г. [424] описал сыворотку, реагирующую со всеми образца­ми резус-отрицательных эритроцитов. Сыворотка была получена от резус-положительной женщины, родившей резус-отрицательного ребенка с гемолити­ческой анемией, что доказывало возможность возникновения резус-конфликта не только в случаях, когда мать Rh-, а плод Rh+, но и, наоборот, когда мать Rh+, а плод Rh-. Обнаруженные антитела получили наименование анти-hr' (с), так как они вы­являли фактор, противоположный (реципрокный) уже известному фактору rh* (С).

В 1943 г. Wiener и Sonn [712] обнаружили антитела, реагирующие примерно с 30 % резус-положительных эритроцитов, но не реагирующие, за редким ис­ключением, с резус-отрицательными эритроцитами. Антиген, выявляемый эти­ми антителами, назван rh" (E).

Пятое антитело, анти-hr" (е), определяющее антиген, антитетичный фактору fh" (E), было обнаружено в 1945 г. Mourant [494].

И наконец, шестое антитело (анти-Сш) обнаружили Callender и Race [189] у пациентки, имевшей поливалентные антитела, среди которых оказались не со­всем обычные антитела, выявляющие антиген, обозначенный авторами Cw. Пациентка, миссис Willis, имела фенотип CCDee, но ее сыворотка агглютиниро­вала все, за редким исключением, образцы эритроцитов, содержащие антиген С. С резус-отрицательными эритроцитами [rr (cde)] антитела не взаимодействова­ли. В течение многих лет полагали, что антиген Cw является разновидностью ан­тигена С, однако молекулярно-генетические исследования последних лет показа­ли, что гены С и Cwне являются аллелями.

Хронология открытия антигенов резус сама по себе характеризует степень их иммуногенности. Более иммуногенные факторы чаще проявляют себя в кли­нической практике, поэтому были выявлены раньше. Менее иммуногенные факторы, реже вызывающие аллоиммунизацию, обратили на себя внимание позже. Некоторые из них (FPTT, STEM, LOCR и др.) - открыты спустя 50 лет и более после обнаружения антигена D. Последовательность открытия антиге­нов эритроцитов удивительно совпадает со шкалой приоритета трансфузионно опасных антигенов эритроцитов D>K>c>E>e>Cw>C.

Дальнейшее более детальное изучение серологических свойств резус-антигена показало, что он полиморфен. В настоящее время известно более 50 его разновидностей (табл. 4.1), которые выявляют с помощью соответствую­щих специфических для каждого варианта антисывороток. Шесть разновид­ностей [Rho (D), rh' (С), rh" (E), hr' (с), hr" (e) и rhwlw)] имеют наибольшее значение в медицинской практике, другие варианты резус-антигена - меньшее значение, поскольку обладают не столь выраженными иммуногенными свой­ствами. Некоторые из них встречаются у большинства людей (RH29, RH34, RH39) или, наоборот, встречаются очень редко (RH9, RH11, RH20 и др.), что также сказывается на относительно низкой частоте аллоиммунизации этими антигенами. Антиген d, антитетичный партнер антигена D, не найден.

В столбце 1 приведены синонимы антигенов разных номенклатур: Фишера -Рейса и в скобках номенклатура Винера или оригинальные названия.

Антигены RhA(RH13), RhB (RH14), Rhc(RH15), RhD(RH16), описанные Unger и Wiener совместно с другими исследователями [668, 669, 671, 709], в 1994 г. исключены из системы резус, поскольку исчерпался запас соответ­ствующих идентифицирующих сывороток и дальнейшее изучение антигенов стало невозможным. Антиген LW (RH25) переведен в систему LW; к другой системе причислен антиген Ducios (ранее ему был присвоен номер RH38); ис­ключены антигены ET(RH24) и 1114 (RH35). Порядковые номера исключен­ных антигенов, согласно правилам номенклатурного комитета ISBT, впредь не присваиваются антигенам системы резус, даже если вновь будут найдены сы­воротки, подобные утраченным.

Таблица 4.1

Антигены Rh-Hr*

 

Антиген

Номер ISBT

Частота, %

Источник

Антиген

Номер ISBT

Частота,

%

Источник

D(Rho)

RH1

85

[408,432]

RN

RH32

<0,1

[224]

ЩЩ

RH2

70

[7081

RHar

RH33

<0,1

[306]

Е (rh")

RH3

30

[553,712]

HrB (Bastiaan)

RH34

>99

[607]

c(rh')

RH4

80

[425]

Bea(Berrens)

RH36

<0,1

[255]

е (rh")

RH5

98

[494]

Evans

RH37

<0,1

[236]

f(ce,hr)

RH6

64

[577]

C-like (ауто-антитела)

RH39

>99

[375]

Се (rh.)

RH7

71

[572]

Tar (Target)

RH40

<1

[437]

Cw(rhwl)

RH8

2

[189]

Ce(rh.)-like

RH41

70

[647]

Cx(rhx)

RH9

<0,1

[634]

Ces

RH42

<1

[493]

V(hrv,ces)

RH10

< 1,20

у негров

[259]

Craw (Crawford)

RH43

<1

[230]

Ew(rhw2)

RH11

<0,1

[321]

Nou

RH44

>99

[334]

G(rhG)

RH12

86

[131]

Riv

RH45

<0,1

[257]

Hr

RH17

>99

[552]

Sec

RH46

>99

[422]

Hr(Hrs)

RH18

>99

[606]

Dav

RH47

>99

[447]

hrs

RH19

98

[606]

JAL

RH48

<0,1

[447,535]

VS (es)

RH20

<1

[595]

STEM

RH49

<0,1

[460]

CG

RH21

69

[431]

FPTT

RH50

<0,1

[167,445]

CE

RH22

<1

[265]

MAR

RH51

>99

[617]

Dw (Wiel)

RH23

<0,1

[222, 227]

BARC

RH52

<1

[314]

c-like

RH26

80

[361]

JAHK

RH53

<0,1

[311]

cE

RH27

30

[309]

DAK

RH54

4 у негров

— p.i

[559]

Антиген

Номер ISBT

Частота,

%

Источник

Антиген

Номер ISBT

Частота, %

Источник

hrH (Hermanez)

RH28

<1

[605]

LOCR

RH55

<0,1

[231]

RH(rh ,

1   nr

Rh-total)

RH29

>99

[331]

CENR  •

RH56

 

[372,558]

Goa (Gon-sales, DCor)

RH30

<0,1

[573]

CEST

RH57

>99

см. гл.

37

Антигены, отнесенные к системе Rh-Нг

hrB

RH31

98

[607]

HOFM

700050

<0,1

[351]

Новости медицины

Рассматривая статины?

Много миллионов человек в мире принимают статины, но исследования показывают, что только 55% из тех, кому рекомендуется принимать статины, принимают их. Это большая проблема, потому что исследования также показывают, что те из группы...

Высокое АД во время беременности может повлиять на сердце женщины в долгосрочной перспективе

Связанное с беременностью высокое кровяное давление может привести к долгосрочным сердечным рискам, показывают новые исследования.

Отмена приема опиоидов по рецепту имеет болезненные последствия для пациентов

Кэролин Консия, столкнулась с более серьезными последствиями репрессий против назначения опиоидов, когда узнала, почему сын ее подруги покончил с собой в 2017 году.

Психическое заболевание не является причиной массовых расстрелов

Новое исследование показывает, что психические заболевания не являются фактором большинства массовых расстрелов или других видов массовых убийств.




Тесты для врачей

Наши партнеры