Открытие антигенов системы резус связано с именем Карла Ландштейнера и двух его учеников, Александра Винера и Филиппа Левина.
В 1940 г. Landsteiner и Wiener [408] обратили внимание на то, что сыворотки морских свинок и кроликов после иммунизации эритроцитами обезьян Macacusrhesusагглютинируют эритроциты не только макак, но и эритроциты людей. Антитела, содержащиеся в этих сыворотках, отличались от анти-М, анти-N и анти-Р, уже открытых к тому времени Ландштейнером совместно с Левиным, и, по всей видимости, выявляли новый антиген.
Анализируя результаты исследований, Landsteiner и Wiener [409] пришли к заключению, что эритроциты человека содержат антиген, аналогичный имеющемуся в эритроцитах Macacusrhesus. Этот антиген, встречающийся у 85 % европеоидов, был назван ими резус-фактором. Эритроциты, содержащие резус-фактор, авторы обозначили символом Rh+, не содержащие резус-фактора, -Rh-, а антитела соответственно - анти-Rh, или антирезус.
Вскоре, в 1941 г., Wiener и Peters [711] обнаружили подобные антитела в сыворотке людей, у которых развились тяжелые осложнения после повторного переливания им одногруппной крови. Двое из них умерли. Эритроциты пострадавших не реагировали с сывороткой антирезус, т. е. были резус-отрицательными. Эти наблюдения позволили исследователям сделать вывод о возможной аллоиммунизации резус-отрицательных реципиентов повторными переливаниями резус-положительной крови и о важной роли резус-фактора в развитии посттрансфузионных осложнений.
Годом раньше Levine и Stetson [432] описали случай тяжелого постгрансфу-зионного осложнения у родильницы. Женщина родила ребенка с гемолитической болезнью новорожденного, и по причине анемии ей была перелита кровь мужа, совместимая по АВО. Авторы обнаружили в сыворотке женщины необычные антиэритроцитарные антитела, которые не были похожи на анти-М, анти-N и анти-Р. Однако причина гемолитической болезни, как и посттрансфузионного осложнения, не была расшифрована. Антитела имели слабую активность, и авторы не связали их присутствие с гемолитической реакцией у матери и ребенка.
Впоследствии Левин, Стетсон и другие авторы, ретроспективно проанализировавшие этот случай, констатировали, что на момент исследования не существовало еще методов идентификации неполных резус-антител (эти методы появились в 1945 г.), поэтому они смогли выявить лишь полные антитела - IgM. Более агрессивные неполные антитела (IgG), которые, по-видимому, и обусловили симптомокомплекс гемолитического осложнения у женщины и ее ребенка, авторы не обнаружили. Лишь много лет спустя сохранившийся образец сыворотки крови этой женщины, по имени Mary Seno, был исследован Rosenfield, который нашел в нем активные анти-Б-антитела IgG.
В 1941 г. Левин с сотрудниками (Levine et al. [430, 433]), проанализировав несколько случаев гемолитических реакций у новорожденных и их матерей, убедительно показали, что в основе гемолитической болезни новорожденных лежит иммунологическая несовместимость матери и плода. Основанием для такого вывода послужили результаты экспериментов, свидетельствующие о том, что антитела, присутствующие в сыворотке матерей, агглютинируют эритроциты новорожденных и эритроциты их отцов. Согласно концепции, сформулированной Левиным, антитела матери, подобные тем, что описали Ландштейнер и Винер, образуются в результате иммунизации антигенами плода, унаследованными им от отца. Затем антитела проникают через плаценту в организм плода и вызывают повреждение его эритроцитов и, как теперь известно, кроветворных тканей.
Многочисленные последующие исследования, проведенные в этом направлении различными авторами, полностью подтвердили правильность выводов Левина и сотрудников.
Открытие резус-фактора и его роли в этиологии и патогенезе гемолитической болезни новорожденных явилось крупным достижением иммуносероло-гической школы Карла Ландштейнера, сопоставимым по значению для медицины и биологии с открытием групп крови АВО. Клиническая практика обогатилась новыми методами диагностики, профилактики и лечения синдромов, обусловленных групповыми факторами крови. Существенный стимул для развития получили трансфузиология, акушерство, судебная медицина, генетика, антропология.
Вслед за Винером исследователи в других странах, повторив его эксперименты с иммунизацией различных животных, получили сыворотки антирезус и использовали их для прикладных и исследовательских целей. В нашей стране P.M. Уринсон [120] приготовила оригинальные сыворотки, которые некоторое время успешно применяли для определения резус-принадлежности доноров и больных. Оригинальность этих реактивов заключалась в том, что они были получены из крови морских свинок, иммунизированных эритроцитами павианов гамадрил. После адсорбции эритроцитами человека А(П) Rh- и В(Ш) Rh_ сыворотки имели титр aHTH-Rho 1 : 10-1 : 80 и были вполне пригодны для использования. Решение практической задачи - получение диагностических сывороток - позволило сделать важный для антропологии вывод о том, что гамадрилы, как и макаки, содержат антиген, аналогичный таковому у человека.
Антирезус-антитела получила М.А. Умнова с сотрудниками [ИЗ, 114], иммунизируя морских свинок нативными эритроцитами и стромой эритроцитов обезьян Macacusrhesusи человека. Куры и кролики оказались не способными вырабатывать резус-антитела в ответ на инъекции эритроцитов.
По мере накопления данных выяснилось, что сыворотки антирезус, полученные от иммунизированных животных и аллоиммунизированных людей, различаются по своей специфической направленности и открывают, хотя и близкие по частоте встречаемости, но разные антигены. Так, Fisk и Foord [285] нашли, что сыворотки животного происхождения агглютинировали резус-отрицательные эритроциты новорожденных. В то же время антитела антирезус человека не реагировали с эритроцитами обезьян Macacusrhesus. Murray и Clark [500] получили антитела со специфичностью антирезус, вводя животным резус-отрицательные эритроциты. Имелись и другие указания на то, что антитела животных и человека не идентичны. Как впоследствии выяснилось, млекопитающие других видов не способны продуцировать антитела к антигенам резус. В итоге проверочных исследований было установлено, что сыворотки животных выявляют не резус-антиген, а другой антиген, который по предложению Левина был назван LW (аббревиатура от Landsteiner, Wiener). Таким образом, сыворотки человеческого происхождения не являются антирезусными в абсолютном смысле этого определения, поскольку не направлены к антигену, имеющемуся в эритроцитах макак. Однако в литературе к тому времени было опубликовано много работ, посвященных резус-фактору, и первоначальное название этого антигена было сохранено.
Вопрос о том, кто открыл резус-фактор, поднимался неоднократно. Как признает большинство авторов (Race и Sanger [544], Mollison и соавт. [476], П.Н. Косяков [69, 70]), это открытие явилось результатом совокупного труда нескольких групп исследователей, среди которых в первую очередь выделяют имена Винера и Левина.
Целенаправленное изучение сывороток крови больных, перенесших пост-трансфузионные осложнения, и женщин, родивших детей с гемолитической болезнью новорожденных, позволило в короткий срок открыть основные антитела, относящиеся к системе резус.
Wiener [708] выявил у одного такого больного антитела, реагирующие с эритроцитами примерно 70 % людей, в то время как известные резус-антитела давали положительные реакции в 85 % случаев. Прослеживалась определенная связь нового фактора с уже известным антигеном, позволившая Винеру отнести его к системе резус. Так был открыт антиген rh' (С).
Levine в 1942 г. [424] описал сыворотку, реагирующую со всеми образцами резус-отрицательных эритроцитов. Сыворотка была получена от резус-положительной женщины, родившей резус-отрицательного ребенка с гемолитической анемией, что доказывало возможность возникновения резус-конфликта не только в случаях, когда мать Rh-, а плод Rh+, но и, наоборот, когда мать Rh+, а плод Rh-. Обнаруженные антитела получили наименование анти-hr' (с), так как они выявляли фактор, противоположный (реципрокный) уже известному фактору rh* (С).
В 1943 г. Wiener и Sonn [712] обнаружили антитела, реагирующие примерно с 30 % резус-положительных эритроцитов, но не реагирующие, за редким исключением, с резус-отрицательными эритроцитами. Антиген, выявляемый этими антителами, назван rh" (E).
Пятое антитело, анти-hr" (е), определяющее антиген, антитетичный фактору fh" (E), было обнаружено в 1945 г. Mourant [494].
И наконец, шестое антитело (анти-Сш) обнаружили Callender и Race [189] у пациентки, имевшей поливалентные антитела, среди которых оказались не совсем обычные антитела, выявляющие антиген, обозначенный авторами Cw. Пациентка, миссис Willis, имела фенотип CCDee, но ее сыворотка агглютинировала все, за редким исключением, образцы эритроцитов, содержащие антиген С. С резус-отрицательными эритроцитами [rr (cde)] антитела не взаимодействовали. В течение многих лет полагали, что антиген Cw является разновидностью антигена С, однако молекулярно-генетические исследования последних лет показали, что гены С и Cwне являются аллелями.
Хронология открытия антигенов резус сама по себе характеризует степень их иммуногенности. Более иммуногенные факторы чаще проявляют себя в клинической практике, поэтому были выявлены раньше. Менее иммуногенные факторы, реже вызывающие аллоиммунизацию, обратили на себя внимание позже. Некоторые из них (FPTT, STEM, LOCR и др.) - открыты спустя 50 лет и более после обнаружения антигена D. Последовательность открытия антигенов эритроцитов удивительно совпадает со шкалой приоритета трансфузионно опасных антигенов эритроцитов D>K>c>E>e>Cw>C.
Дальнейшее более детальное изучение серологических свойств резус-антигена показало, что он полиморфен. В настоящее время известно более 50 его разновидностей (табл. 4.1), которые выявляют с помощью соответствующих специфических для каждого варианта антисывороток. Шесть разновидностей [Rho (D), rh' (С), rh" (E), hr' (с), hr" (e) и rhwl (Сw)] имеют наибольшее значение в медицинской практике, другие варианты резус-антигена - меньшее значение, поскольку обладают не столь выраженными иммуногенными свойствами. Некоторые из них встречаются у большинства людей (RH29, RH34, RH39) или, наоборот, встречаются очень редко (RH9, RH11, RH20 и др.), что также сказывается на относительно низкой частоте аллоиммунизации этими антигенами. Антиген d, антитетичный партнер антигена D, не найден.
В столбце 1 приведены синонимы антигенов разных номенклатур: Фишера -Рейса и в скобках номенклатура Винера или оригинальные названия.
Антигены RhA(RH13), RhB (RH14), Rhc(RH15), RhD(RH16), описанные Unger и Wiener совместно с другими исследователями [668, 669, 671, 709], в 1994 г. исключены из системы резус, поскольку исчерпался запас соответствующих идентифицирующих сывороток и дальнейшее изучение антигенов стало невозможным. Антиген LW (RH25) переведен в систему LW; к другой системе причислен антиген Ducios (ранее ему был присвоен номер RH38); исключены антигены ET(RH24) и 1114 (RH35). Порядковые номера исключенных антигенов, согласно правилам номенклатурного комитета ISBT, впредь не присваиваются антигенам системы резус, даже если вновь будут найдены сыворотки, подобные утраченным.
Таблица 4.1
Антигены Rh-Hr*
Антиген |
Номер ISBT |
Частота, % |
Источник |
Антиген |
Номер ISBT |
Частота, % |
Источник |
D(Rho) |
RH1 |
85 |
[408,432] |
RN |
RH32 |
<0,1 |
[224] |
ЩЩ |
RH2 |
70 |
[7081 |
RHar |
RH33 |
<0,1 |
[306] |
Е (rh") |
RH3 |
30 |
[553,712] |
HrB (Bastiaan) |
RH34 |
>99 |
[607] |
c(rh') |
RH4 |
80 |
[425] |
Bea(Berrens) |
RH36 |
<0,1 |
[255] |
е (rh") |
RH5 |
98 |
[494] |
Evans |
RH37 |
<0,1 |
[236] |
f(ce,hr) |
RH6 |
64 |
[577] |
C-like (ауто-антитела) |
RH39 |
>99 |
[375] |
Се (rh.) |
RH7 |
71 |
[572] |
Tar (Target) |
RH40 |
<1 |
[437] |
Cw(rhwl) |
RH8 |
2 |
[189] |
Ce(rh.)-like |
RH41 |
70 |
[647] |
Cx(rhx) |
RH9 |
<0,1 |
[634] |
Ces |
RH42 |
<1 |
[493] |
V(hrv,ces) |
RH10 |
< 1,20 у негров |
[259] |
Craw (Crawford) |
RH43 |
<1 |
[230] |
Ew(rhw2) |
RH11 |
<0,1 |
[321] |
Nou |
RH44 |
>99 |
[334] |
G(rhG) |
RH12 |
86 |
[131] |
Riv |
RH45 |
<0,1 |
[257] |
Hr |
RH17 |
>99 |
[552] |
Sec |
RH46 |
>99 |
[422] |
Hr(Hrs) |
RH18 |
>99 |
[606] |
Dav |
RH47 |
>99 |
[447] |
hrs |
RH19 |
98 |
[606] |
JAL |
RH48 |
<0,1 |
[447,535] |
VS (es) |
RH20 |
<1 |
[595] |
STEM |
RH49 |
<0,1 |
[460] |
CG |
RH21 |
69 |
[431] |
FPTT |
RH50 |
<0,1 |
[167,445] |
CE |
RH22 |
<1 |
[265] |
MAR |
RH51 |
>99 |
[617] |
Dw (Wiel) |
RH23 |
<0,1 |
[222, 227] |
BARC |
RH52 |
<1 |
[314] |
c-like |
RH26 |
80 |
[361] |
JAHK |
RH53 |
<0,1 |
[311] |
cE |
RH27 |
30 |
[309] |
DAK |
RH54 |
4 у негров — p.i |
[559] |
Антиген |
Номер ISBT |
Частота, % |
Источник |
Антиген |
Номер ISBT |
Частота, % |
Источник |
hrH (Hermanez) |
RH28 |
<1 |
[605] |
LOCR |
RH55 |
<0,1 |
[231] |
RH(rh , 1 nr Rh-total) |
RH29 |
>99 |
[331] |
CENR • |
RH56 |
|
[372,558] |
Goa (Gon-sales, DCor) |
RH30 |
<0,1 |
[573] |
CEST |
RH57 |
>99 |
см. гл. 37 |
Антигены, отнесенные к системе Rh-Нг |
|||||||
hrB |
RH31 |
98 |
[607] |
HOFM |
700050 |
<0,1 |
[351] |