Напишите нам

Поиск по сайту

Наш блог

Как я заболел во время локдауна?

Это странная ситуация: вы соблюдали все меры предосторожности COVID-19 (вы почти все время дома), но, тем не менее, вы каким-то образом простудились. Вы можете задаться...

5 причин обратить внимание на средиземноморскую диету

Как диетолог, я вижу, что многие причудливые диеты приходят в нашу жизнь и быстро исчезают из нее. Многие из них это скорее наказание, чем способ питаться правильно и влиять на...

7 Фактов об овсе, которые могут вас удивить

Овес-это натуральное цельное зерно, богатое своего рода растворимой клетчаткой, которая может помочь вывести “плохой” низкий уровень холестерина ЛПНП из вашего организма....

В какое время дня лучше всего принимать витамины?

Если вы принимаете витаминные и минеральные добавки в надежде укрепить свое здоровье, вы можете задаться вопросом: “Есть ли лучшее время дня для приема витаминов?”

Ключ к счастливому партнерству

Ты хочешь жить долго и счастливо. Возможно, ты мечтал об этом с детства. Хотя никакие реальные отношения не могут сравниться со сказочными фильмами, многие люди наслаждаются...

Как получить сильные, подтянутые ноги без приседаний и выпадов

Приседания и выпады-типичные упражнения для укрепления мышц нижней части тела. Хотя они чрезвычайно распространены, они не могут быть безопасным вариантом для всех. Некоторые...

Создана программа предсказывающая смерть человека с точностью 90%Смерть научились предсказывать

Ученые из Стэнфордского университета разработали программу предсказывающую смерть человека с высокой точностью.

Зарплата врачей в 2018 году превысит средний доход россиян в два разаЗП докторов

Глава Минздрава РФ Вероника Скворцова опровергла сообщение о падении доходов медицинских работников в ближайшие годы. Она заявила об этом на встрече с журналистами ведущих...

Местная анестезия развивает кардиотоксичностьАнестетики вызывают остановку сердца

Федеральная служба по надзору в сфере здравоохранения озвучила тревожную статистику. Она касаются увеличения риска острой кардиотоксичности и роста сопутствующих осложнений от...

Закон о праве родителей находиться с детьми в реанимации внесен в ГосдумуРебенок в палате

Соответствующий законопроект внесен в палату на рассмотрение. Суть его заключается в нахождении одного из родителей в больничной палате бесплатно, в течении всего срока лечения...

Генетика

Система Rh - одна из наиболее полиморфных систем, антигены которой ко­дируются 2 генами (RHD и RHCE), расположенными на коротком плече хро­мосомы 1 в локусе RH между 1р34.3 и 1р36.13 (Cherif-Zahar и соавт. [211], MacGeoch и соавт. [453], Marsh и соавт. [462]).

Три генетические теории

Существуют 3 генетические концепции наследственной передачи антигенов Rh. Первая разработана в начале 50-х годов прошлого столетия Александром Винером (Wiener и соавт. [714, 715]), вторая - в тот же период Рональдом Фишером совместно с Робертом Рейсом (Fisher, Race [283, 284], Race [543]). Третья концепция, получившая в последние годы подтверждение, предложена в 90-х годах прошлого столетия Патрисией Типпетт (Tippett [654, 656]).

Интересно проследить логику построения этих концепций.

Располагая двумя сыворотками: aHTH-Rho и анти-rh', выявляющими 2 антиге­на - Rho и rh', Винер вполне обоснованно допустил, что существует не 2, а 4 аг- глютиногена резус: Rho, rh', Rho' и rh-агглютиноген, не содержащий ни Rho, ни rh'. Он полагал, что аллель R гена Rh обусловливает продукцию антигена Rho, аллель R1 - продукцию антигенов Rho и rh', аллель г' - антигена rh', а аллель г - отсутствие обоих антигенов - Rh и rh'.

Винер, не имея экспериментальных данных, свидетельствующих о том, что отдельные гены могут быть сцеплены, сделал вывод, что все антигенные признаки Rh контролирует только 1 (но полиморфный) ген (рис. 4.1). Это и явилось основой его концепции, получившей известность как теория одно­го гена.

Антигены, продуцируемые редкими аллелями RHCE-локуса при его повреждении

Повреждение СЕ протеина

Продуцируемые

антигены

(С)(е)

Rh9 С*

(G)(e)

Rh32

(С)(е)

Rh35

1 (С)(е) '

Rh48 (JAL)rv

• н

Rh36 (Be8)

Задолго до Tippett (в 1964 г.) идею о существовании двух генов RH, струк­турного к операторного, высказал Lauer [410], однако его исследования не были продолжены.

Sanger и соавт, [596], исследуя природу антигена f, установили, что этот анти­ген вырабатывается в случае, если гены сие расположены на одной хромосоме в положении цис. Такое же заключение было сделано ими относительно антигена Се: он вырабатывается г/мс-комбинацией генов Сие. Race и Sanger приблизились к современному пониманию того, что генетический материал, именовавшийся ра­нее локусами с, е, С и Е, представляет собой один и тот же ген, имеющий аллели се, Се, сЕ и СЕ. Однако этот вывод не был ими сформулирован.

Следует обратить внимание на некоторые противоречия и сложности, привне­сенные новым пониманием того, что система Rh кодируется не тремя или четырь­мя парами аллельных генов, а только двумя: RHD и RHCE. Прежние генетические теории объясняли все предельно просто. Так, в соответствии с Я/ьЯг-концепцией фенотип RjRj, или Rho'" hr'", обусловлен гаплотипами R1 и R2', в соответствии с СО£-концепцией фенотип CcDEe кодируется генами С, с, D, Ей е, переданными индивиду по наследству с гаплотипами CDe и cDE. С позиций двухгенной тео­рии фенотип CcDEe объяснить сложнее. Согласно двухлокусной модели индивид CcDEe должен унаследовать ген RHD и один из аллелей гена RHCE (RHce, RHCe, RHcE или RHCE). В любой из возможных комбинаций (Dee, DCe, DcE, DCE) пол­ного набора антигенов CcDEe не получается и в этом заключается противоречие.

Вряд ли можно полагать, что аллель RHCe производит антигены с и Е, а ал­лель RHcE - антигены Сие. Это маловероятно, поскольку нарушает основную идею двухгенной модели и, кроме того, не соответствует результатам серологи­ческих исследований. Остается признать, что фенотип CcDEe является продук­том гибридного гена Ce-D-cE. Такое объяснение более правдоподобно. Как по­казали результаты исследования последних лет, фенотип cde часто обусловлен делецией гена RHD. Возможность гибридизации генов RH, в силу их высокой гомологии, не вызывает сомнения и, по-видимому, явление частое.

Ретроспективный взгляд на 3 генетические теории

Винер не разделял теорию трех генов Фишера - Рейса, оставаясь последо­вательным приверженцем концепции одного гена. Не признал он и кроссин- говер. Действительно, при наличии одного гена кроссинговер маловероятен. Убежденность, с которой Винер отстаивал свои взгляды, побуждает критически отнестись к рассмотрению этого вопроса.

Легко приняв на веру подкупающую простотой теорию Фишера - Рейса, мало кто из специалистов, кроме Винера, подверг ее серьезной перепроверке. Прокоп и Гёллер в фундаментальном труде «Группы крови человека» [90] пи­шут, что Винер критиковал теорию кроссинговера, неоднократно проверяя ее по таблицам популяционно-генетических исследований и не находя в них под­тверждения ожидаемого кроссинговера. Напротив, некоторые позиции противо­речили теории Фишера.

По мнению Рейса [544], на кроссинговер указывали лишь единичные наблю­дения, из которых трудно было сделать однозначное заключение о существова­нии этого феномена.

В концепции Типпетт также нет места кроссинговеру. Трудно ожидать пере­креста двух расположенных рядом тесно сцепленных локусов. При таких усло­виях более вероятны делеции, мутации и конверсии.

Как и любое теоретическое построение, рассмотренные выше 3 генетиче­ские теории - это лишь предположения, попытки систематизировать, объяснить экспериментальные данные, исходя из представлений того времени.

Сегодня можно высказать суждение (ни в коей мере не подвергая сомнению теорию Фишера), что порядок расположения генов RH может соответствовать последовательности D-Е -С и это ничего не меняет на фенотипическом уров­не. Кроссинговер (если он в системе Rh происходит) может дать такие же соче­тания антигенов при последовательности генов D-E-C, как и при последова­тельности D - С - Е (см. рис. 4.2). Последовательность генов С - D - Е также ничего не меняет в Rh-фенотипе человека, если допустить возможность выбо­рочной конверсии генетического материала при мейозе.

Гаплотип cDe встречается в 10-13 раз чаще у негроидов, чем у европеоидов (42,3 и 3,2 % соответственно [108]). Если бы гаплотип cDe являлся результатом кроссинговера, как полагал Фишер, то частота гаплотицов Cde, cdE, CDE и CdE также должна быть существенно выше у негроидов, чем у европеоидов. Однако в действительности частота указанных гаплотипов у представителей этих двух рас приблизительно одинакова. Тем не менее идея Фишера о том, что редкие га- плотипы образуются посредством кроссинговера частых гаплотипов, признает­ся всеми исследователями как весьма элегантная, и если кроссинговер не был до сих пор убедительно доказан, то он и не был полностью опровергнут.

Теоретические построения Типпетт, при всей их оригинальности, также не могут рассматриваться как истина в последней инстанции. В них много допу­щений. Не ясно: почему чаще образуются антитела анти-С, анти-с, анти-Е и анти-е, чем антитела анти-се, анти-Ce, анти-сЕ и анти-СЕ, хотя обе группы ан­тител стимулированы, как полагает Типпетт, одним полипептидом? Почему так часто образуются несепарируемые анти-БС-антитела, если антигены D и С находятся на разных полипептидах? Почему чаще вырабатываются анти-DE- антитела, чем анти-Е, но реже, чем анти-DC? Винер объяснял это существова­нием двух агглютиногенов: Rho' (DC) и Rho" (DE), которые встречаются с раз­ной частотой. По мнению Фишера, это объясняется тем, что гены D и Е, а зна­чит и антигены D и Е, дальше отстоят друг от друга, чем D и С, поэтому веро­ятность образования анти-ОС-антител выше, чем анти-DE. С позиций концеп­ции Типпетт образование комбинированных антител анти-DC и анти-DE мож­но объяснить, допустив, что эпитопы Rh мозаично переплетены на поверхности эритроцитов в виде близкорасположенных пар DC и DE.

Концепция двух генов пока еще осмысливается иммуносерологами, привык­шими оперировать категориями Винера, Фишера и Рейса. Если антитела анти- се, анти-Ce, анти-сЕ и анти-СЕ определяют продукты гена RHCE, то почему ан­титела анти-DC и анти-DE не могут свидетельствовать о существовании гена RHDCE с аллелями DC и DE, подобно тому, как считал Винер?

Пока ответом на этот вопрос служит открытие двух разных протеинов, несу­щих антигены D и СЕ. Однако не исключено, что в ближайшем будущем могут быть найдены протеины, несущие одновременно специфичность D и С, D и Е. Гибридные гены DC-D/D-DC, продуцирующие необычные иммунодоминант- ные протеины, известны. Вместе с тем следует признать, что теория двух генов представляет несомненный прогресс в иммуносерологии и весьма перспектив­на для дальнейших молекулярно-биологических изысканий.

Как справедливо указывают Issitt, Anstee [374], дискуссия относительно трех генетических теорий системы резус далека от завершения. Однако эта дискуссия не содержит антагонистических противоречий. Как первая, так и вторая, и тре­тья теории не противоречат практике и вполне устраивают иммуносерологов, су­дебных медиков, генетиков и других специалистов. Различаясь по форме, эти кон­цепции никак не сказываются на интерпретации результатов фенотипирования при использовании конкретных тестовых реагентов. В этих теориях практически все позиции общие, за исключением количества детерминирующих генов.

Номенклатура Фишера - Рейса не противоречит номенклатуре Винера, так как опирается на одни и те же факты (обе исследовательские группы, Рейса в Англии и Винера в Америке, обменивались найденными сыворотками и сопо­ставляли полученные результаты). Концепция Типпетт никаких изменений в су­ществующую номенклатуру не внесла.

И все-таки, может быть, более всех прав Винер, и наблюдаемое разнообра­зие фенотипов резус, несмотря на национальные и расовые особенности, обе­спечивается одним геном? Многочисленных воздействий на дистанции «фор­мирование гена —► ген —► готовый продукт» в виде кроссинговера, конверсии, мутации, делеции, пространственного взаимовлияния генов друг на друга и всего, что может воздействовать на кодирующую ДНК и синтез полипептидов, более чем достаточно, чтобы обеспечить существующее разнообразие. Вряд ли для этого нужно 3, а тем более 50 генов, достаточно одного. Теория Типпетт по­строена в унисон теории Винера. Она по сути представляет собой возврат от те­ории трех генов или более к теории одного гена.

Как уже указывалось выше, серологически определяемые антигены А, В и Н не являются непосредственными продуктами генов. Гены А, В и //контроли­руют синтез соответствующих трансфераз. В настоящее время строение генов АВО и Я расшифровано (рис. 3.7). Их удалось клонировать и секвенировать. Расшифрована также аминокислотная последовательность А- и В-трансфераз, которые отличаются друг от друга двумя аминокислотами в позициях 266 и 268 (рис. 3.8).

Аминокислотная последовательность А-* и В-трансферазы**

Гены АВО содержат по 1062 пары оснований и кодируют пептиды, состоя­щие из 354 аминокислот (Reid, Lomas-Francis [186]). Секвенирование генов А и В позволило установить отличающие их последовательности в 7 кодонах, 4 из них (в позициях 176, 235, 266 и 268) могут быть причиной замены амино­кислот в трансферазах. Секвенирование гена 01 показало его идентичность с А1 до нуклеотида 261, с которого рамка считывания нарушается с образовани­ем стоп-кодона (Daniels [87]). Такой аллель кодирует синтез пептида, не облада­ющего какой-либо трансферазной активностью. 

Выявлено несколько вставок: гуанин-цитозин (GC boxes), которые находят­ся выше кодона, инициирующего транскрипцию, и могут играть важную роль в регуляции активности трансфераз. Транскрипция генетической информации за­висит от мини-сателлитов - участков размером 4 кб, расположенных выше на­чального участка считывания. Эксперименты с трансфекцией генов показали, что активность транскрипции гена А по сравнению с В существенно ниже.

Найдены часто встречающиеся аллели, характерные для представите­лей различных этнических групп. Так, примерно 80 % аллелей А1 среди япон­цев отличались от аллелей А1 европейцев мутацией, ведущей к замене проли- на на лейцин в положении 156. Однако это никак не проявляло себя на фено­типическом уровне (Olsson и соавт. [176-178]). Вместе с тем вставка одного нуклеотида в позиции от 798 до 804 в аллеле А2 приводила к синтезу продук­та, не обладающего трансферазной активностью (аллель О3) (Olsson и соавт. [179]). При сравнении нескольких аллелей установлена их гибридная природа. Образование гибридов, включающих фрагменты двух разных аллелей, авторы объясняют кроссинговером во время мейоза. В большинстве случаев кроссин- говер затрагивал экзон 6. При наличии делеции G 261 экзон 7 фенотипически не проявлялся. В тех случаях, когда экзон 6 не содержал указанной делеции, экзон 7 аллеля А1 или О1 проявлял себя фенотипически как Aj-серологическая активность. Экзон 7 аллеля О/v проявлял себя как А2-серологическая актив­ность (Ogasawara [170]).

Описана семья, в которой мать имела группу В, ребенок - А, отец - О. На первый взгляд, такие результаты серологического исследования в тра­диционной интерпретации должны были исключить отцовство. Однако ре­зультаты молекулярно-генетического исследования не позволили этого сде­лать. Секвенирование генов АВО членов данной семьи показало, что у ребен­ка имелся гибридный ген, экзон 6 которого содержал фрагменты гена В, а эк­зон 7 - фрагменты гена 0lv. Поскольку экзоны 7 аллелей А1 и 0 идентичны, а в экзоне 6 указанного гибридного гена, B-0Iv, отсутствовала делеция G 261 (стоп-кодон), на эритроцитах ребенка сформировался антиген A (Olsson и соавт. [177]). Вероятно, этот 2?-0Уу-гибридный ген с А-трансферазной активностью возник во время мейоза в результате кроссинговера.

В литературе появляется все больше материалов, свидетельствующих о ге­терогенности аллелей А, В, Н и Se среди представителей различных рас и эт­нических групп. Молекулярно-генетические методы позволяют выявлять ва­рианты генов с точковыми мутациями, делециями, гибридными включениями (табл. 3.14, 3.15, 3.16, рис. 3.8), приводящими к формированию стоп-кодонов, инактивации участков сплайсинга (Ogasawara и соавт. [170]). В ряде случа­ев отмечены эпистатические эффекты в виде аллельного угнетения (Feng и со­авт. [101]) или, напротив, аллельного усиления активности генов (Morel и со­авт. [162], Ogasawara и соавт. [171]). Структурные особенности генов часто не проявляют себя и лишь в редких случаях приводят к появлению необычных

Таблица 3.1 б

Аллели, ассоциированные со слабой экспрессией В

Фенотип

Аллель

Замена

нуклеотидов

Замена

аминокислот

вз

В3-1

С 105 4T

Arg 352 Tip

В

X

Bw-1 *В104

G 871 А

Asp 291 Asn

Ве,

Ве1-1*В105

Т 641 G

Met 214 Arg

Ве1

Ве1-2 *В10б

G669T

Glu 223 Asp

В

W

Bw-2

С 873 G

Asp 291 Glu

В

W

Bw-3

С 721 Т

Arg 241 Trp

В

W

Bw-4

А 748 G

Asp 183 Gly

В

W

Bw-5

G 539 А

Arg 180 His

В

W

Bw-6

А 1036 G

Lys 346 Glu

в

W

Bw-7

G 1055 А

Arg 352 Gin

в

W

Bw-8

T863 G

Met 288 Arg

Высокая степень гомологии локуса АВО человека обнаружена также при сравнении с аналогичными локусами других млекопитающих: хомяков, крыс, мышей, овец, коров, кроликов, кошек и собак (Daniels [87], Roubinet и соавт. [190]). Интересная деталь: трансферазная активность локуса АВО у мышей вдвое выше, чем у человека (Roubinet и соавт. [190]).

Высокая степень подобия выявлена при секвенировании генов FUTl(Hh) и FUT2(Se) (табл. 3.17, см. рис. 3.8). Полагают, что локус FUT2 мог произойти в результате преобразования гена FUT1 (Daniels [87]).

Таблица 3.17

Аминокислотная последовательность гликозилтрансфераз у млекопитающих

Перспектива создания универсальных эритроцитов привлекла многих иссле­дователей, появилась возможность конвертировать эритроциты группы А в О, и таким образом решить проблему АВО-несовместимых гемотрансфузий.В настоящее время предпринимаются попытки синтезировать а-галакгозилазу генно-инженерным путем, поскольку фермент из натурального сырья дорог окончательно не выяснен. Недостаточно изучены естественные эндогенные ин­гибиторы антителообразования, которые, по-видимому, могут влиять на состоя­ние респондерства или нереспондерства в отношении резус-антигена.

Вид

Аллель, антиген, энзим

Высокогомологичный фрагмент аминокислотной последовательности

Человек

А101

FTYERRPQSQAYIPKDEGDFYYLGGFFGG

272

Человек

В101

FTYERRPQSQAYIPKDEGDFYYMGAFFGG

272

Человек

001

FTYERRPQSQAYIPKDEGDFYYLGRFFGG

272

Человек

цис-АВ

FTYERRPQSQ AYIPKDEGDF YYLG AFF GG

272

Мышь

АВ

FTYERRPQSQAYIPWDRGDFYYGGAFFGG

251

Свинья

А

FTYERRPLSQAYIPRDEGDFYYAGGFFGG

282

Собака

Антиген Форссмана

FP YERRHISTAF VAENEGDF Y Y GG AVF GG

267

Мышь

Г алактозилтрансфераза

FT YERRELS AAYIPFGEGDF YYHAAIF GG

312

Корова

Г алактозилтрансфераза

FTYERRKESAAYIPFGEGDFYYHAAIFGG

286

Крыса

ЮЬЗ

LPYERDKRSAAALSLSEGDFYYMAAVFGG

259

Не утверждая, что это лежит в основе статуса нереспондерства, мы тем не ме­нее приведем некоторые размышления. Предположим, что резус-принадлежность D- данного человека обусловлена неполной делецией гена D, и небольшая часть генетического материала все же сохранилась. Этой части не достаточно, чтобы вос­производимый ею субстрат мог быть выявлен серологически как D+, однако мо­жет быть достаточно, чтобы антиген D, введенный с перелитой кровью, не воспри­нимался как чужеродный. Таким образом, нереспондеры по отношению к резус- антигену - это лица, в эритроцитах которых присутствует вещество, гомологичное антигену D, в небольшом, серологически невыявляемом количестве (скрытый D). Не исключено, что такие лица могут иметь фенотип Del, при котором следовые ко­личества антигена D выявляют только с помощью адсорбции - элюции.

Предпринятые некоторыми исследователями попытки индуцировать состоя­ние толерантности к резус-фактору посредством орального введения эритроци­тов Rh+ не увенчались успехом. Остается недоказанным предположение о су­ществовании гена респондерства и нереспондерства.

Благодаря молекулярно-биологическим исследованиям Colyn, Mouro, Wolter, Cherif-Zahar, Le Van Kim и других исследователей стало понятно, почему анти­ген D столь иммуногенен.

В 1991 г. Colyn и соавт. [233] выяснили, что резус-положительные лица име­ют 2 гена: RHD и RHCE, кодирующие выработку резус-антигенов. В то же вре­мя у большинства резус-отрицательных людей ген RHD подвергнут делеции и они имеют только 1 ген - RHCE. Последний представлен 4 аллелями: RHCe, RHcE, RHce и RHCE, кодирующими соответственно 4 варианта субстрата - Се, сЕ, се и СЕ. Полипептиды, кодируемые аллелями RHCE, имеют весьма значи­тельное структурное сходство.

Как установили Mouro и соавт. [496], Wolter и соавт. [720], Cherif-Zahar и со­авт. [208], Le Van Kim и соавт. [418], полипептид, несущий иммунодоминант- ный эпитоп С, отличается от полипептида, несущего иммунодоминантный эпи­топ с, всего лишь четырьмя аминокислотами в цепи из 417 аминокислот, и лишь одно из этих 4 различий определяет специфичность С и с. Полипептид, несущий Е-специфичность, отличается от несущего е-специфичность одной аминокисло­той. Иными словами, когда реципиенты Cde получают трансфузию эритроцитов cde, а реципиенты cde - трансфузию эритроцитов Cde, иммунная система реципи­ента не всегда отличает перелитое вещество Rh от своего собственного. То же са­мое происходит, когда людям с фенотипом cDE, cdE или cDe, cde переливают эри­троциты cDe, cde или соответственно cDE, cdE: их иммунная система не в состо­янии отличить чужой антиген от собственного по одной различающейся позиции.

Полипептид, кодируемый геном RHD, отличается от кодируемого геном RHce по величине [208, 233, 418, 496, 720]. Такое различие существенно для иммунной системы реципиента. При делеции гена RHD кодируемое им веще­ство Rh не производится, поэтому вводимый при гемотрансфузии антиген прак­тически не имеет у реципиента какого-либо эквивалента. Иммунный ответ особенно сильно проявляется у лиц с фенотипом -D- и Rhnull, у которых часть или все антигены Rh отсутствуют. В этом случае антигенные различия реципиента и донора, даже если последний Rh-, очень велики.

На основании результатов молекулярно-биологических исследований, сви­детельствующих о незначительных различиях в структуре минорных резус- антигенов С, с, Е, е, а также основываясь на данных статистики, показываю­щих, что частота антител к этим антигенам невысока, некоторые исследовате­ли предлагают пересмотреть существующее положение о резуе-положительных и резус-отрицательных донорах. В частности, предлагается относить к резус- отрицательным донорам лиц D-, содержащих антигены С и Е, и узаконить трансфузии крови Cde, cdE и CdE резус-отрицательным реципиентам. По их мнению, такой подход, позволит расширить ресурсы донорской крови Rh-, сэ­кономит значительные средства, затрачиваемые на дополнительное типирова- ние доноров по факторам С и Е, и связанные с этим другие расходы.

Хотя мировое сообщество трансфузиологов в целом не приняло этот предло­жение, оно не лишено здравого смысла.

Придерживаясь общепринятого положения, предписывающего относить к резуе-отрицательным донорам только лиц, не содержащих факторов D, С и Е, мы все же рассмотрим его по существу.

В начале 50-х годов прошлого столетия сложилось представление о том, что для реципиентов cde антигены С и Е столь же иммуногенны, как D. Это представление базировалось на данных о высокой частоте встречаемости ан­тител анти-С и анти-Е в виде комбинированных сочетаний: анти-DC и анти- DE. Создавалась видимость высокой иммуногенности этих факторов и отсю­да опасение, что для реципиентов D-C-E- антигены С и Е будут также имму­ногенны. В действительности чистые антитела к факторам С и Е без анти-D- антител встречаются редко, что свидетельствует об их невысоких иммуноген- ных свойствах.

Для того чтобы еще больше обезопасить резус-отрицательных реципиен­тов от возможной аллоиммунизации, им переливают эритроциты, не содержа­щие этих факторов. Предпочтение такой тактики было в значительной степени произвольным, поскольку объективная статистика, подтверждающая правомер­ность такого подхода, отсутствовала.

В то же время реципиентам Rh+ переливают эритроциты, которые в 20-30 % случаев не идентичны по антигенам С и Е, не опасаясь при этом вызвать алло­иммунизацию. Вряд ли такой подход можно признать правильным, поскольку реципиенты Rh+, хотя и редко, но все же иммунизируются минорными анти­генами с, Cw, С, Е и е. В табл. 4.2 представлены данные, характеризующие сте­пень иммуногенности минорных Rh-антигеновискусственная иммунизация нативными и энзимированными эритроцитами не позволяла получить эти антитела (Р.С. Сахаров [96, 98]).

В опытах по иммунизации, когда инъекции продолжались в течение полу­тора лет, Jones, Diamond и Allen (1954) не смогли стимулировать продукцию анти-С и анти-Е ни у одного из 32 человек D+.

Очень часто иммунизация, предпринятая с целью получения антител анти-С и анти-Е, приводит к выработке антител анти-KEL 1 или анти-hr' (с). Об этом свидетельствуют многочисленные данные, полученные отечественными иссле­дователями Т.Г. Соловьевой, А.Г. Башлай, Р.С. Сахаровым, В.А. Мороковым, И.С. Липатовой и другими, занимавшимися направленной искусственной им­мунизацией с целью получения моноспецифических тестовых сывороток.

Анти-С-антитела хотя и редки, но значительно чаще образуются у резус- отрицательных людей, чем у резус-положительных, что еще раз подтвержда­ет правильность современной трансфузиологической тактики, предусматрива­ющей переливание резус-отрицательным реципиентам эритроцитов, лишенных антигенов С и Е. Сложившуюся повсеместно практику переливания эритроци­тов Rh+ резус-положительным реципиентам без учета факторов С и Е вряд ли можно считать идеальной, поскольку это приводит к аллоиммунизации реципи­ентов факторм hr' (с), который иммуногенен для гомозигот CDe/CDe и обуслов­ливает около 3 % посттрансфузионных осложнений.

Итак, многие аргументы убеждают в необходимости переливать эритроци­ты, идентичные по основным антигенам системы Rh-Hr: D, С, Е, с, е. К этому перечню необходимо добавить антиген Cw, частота сенсибилизации к которому составляет 1-2 % [40].

Роль Rh-антигенов в биологии человека неясна. Gahmberg и соавт. [296], Ridgwell и соавт. [566], Paradis и соавт. [517] полагают, что резус-антигены явля­ются лишь структурным элементом мембраны эритроцитов. Число молекул по­липептида Rh и гликопротеина Rh на 1 эритроцит достигает 200 тыс. (Hughes- Jones и соавт. [364]), что делает их основными мембранными белками.

Вещество Rh присутствует только в эритроцитах и, по-видимому, выполняет определенную функцию, специфичную именно для этих клеток.

По данным Schmidt и соавт. [5] и Sturgeon [638], эритроциты людей с фено­типом Rhnull, при котором, как известно, отсутствуют Rh-антигены, имеют эл­липсоидную форму. Концентрация анионов в мембране снижена (Balias и со­авт. [151]). Эритроциты часто дегидратированы из-за повышенного транспорта воды через клеточную мембрану (Lauf, Joiner [411], Nash, Shojania [504]). Срок их приживления in vivo меньше, чем обычных эритроцитов [598].

Ridgwell и соавт. [565] нашли, что аминокислоты Glu 21 и Glu 146 в транс­мембранной части Rh-полипептида и аминокислоты Glu 13 и Glu 148 в транс­мембранной части Rh-гликопротеина обеспечивают движение катионов через мембрану эритроцита и относятся к структурам, которые подобно аквапорину-1 (антигену Colton) являются транспортерами воды в клетку.

 

Система резус полиморфна. Помимо четко очерченных антигенов, она вклю­чает варианты, при которых антигены выражены слабо либо вовсе не продуци­руются. Для ясности дальнейшего изложения объясним некоторых обозначе­ния, встречающиеся в современных публикациях.

Как видно из табл. 4.5, наименования отдельным вариантам, в том числе редко встречающимся, присваивали в значительной мере произвольно. В этом плане классификация ISBT внесла определенный порядок. Тем не менее обо­значения, характеризующие необычную выраженность антигенов или их не­ожиданное отсутствие, в литературе сохраняются, например фенотипы Rhnull, -D-, (C)D(e). В последнем случае необычные фенотипы со слабовыраженны- ми антигенами Сие, кодируемые геном RN и чаще встречающиеся у негров, обозначают как (C)D(e), выделяя скобками очень слабые или практически от­сутствующие антигены Сие.

Обозначение f (се) и rh. (Се) с дублирующим синонимом, помещенным в скобки, более информативно для читателя, чем обозначение этих антигенов как f и rhj, поскольку указывает на генетическую подоплеку их формирования (по­зицию цис генов се или Се). Антиген f продуцируется комбинацией генов с иев положении цис. При размещении генов спев позиции транс антиген f не фор­мируется. Аналогичная ситуация имеет место в отношении антигена rh., кото­рый вырабатывается в том случае, если как минимум на одной из унаследован­ных гомологичных хромосом в позиции цис расположены локусы Си е. Гены С и ев позиции транс антигена rh. (Се) не производят.

Антигены резус встречаются с частотой: D - 85 %, С - 70 %, с - 80 %, Е - 30 %, е - 97,5 %. В табл. 4.6 представлены варианты фенотипов и генотипов Rh, а также результаты серологических реакций, в которые вступают эритроциты с тем или иным сочетанием антигенов резус. Фенотип Rh-Hr выявляют с помощью

5   сывороток: анти-D, анти-С, анти-Е, анти-с и анти-е. Сыворотки анти-се, анти- Се, анти-сЕ и анти-СЕ обнаруживают на эритроцитах дополнительный антиген­ный продукт, кодируемый генами, когда они находятся в одном гаплотипе одно­временно. Реагирование этих сывороток при одинаковом фенотипе, но разном ге­нотипе людей не совпадает, что может быть использовано для установления ге­нотипа Rh по фенотипу. Например, лица с фенотипом CcDEe (Се+се-сЕ+СЕ-), с большой степенью вероятности (99,99 %) имеют генотип CDe/cDE (генотипы Cde/cDE или CDe/cdE менее вероятны), а лица с тем же фенотипом CcDEe (но Се-се+сЕ~СЕ+) имеют генотип CDE/cde или, что менее вероятно, CdE/cDe.

Выраженность антигенов Rh на эритроцитах варьирует в широком диапазо­не. Выделяют сильные, средние и слабые формы антигенов. Эритроциты, не­сущие эти формы, обычно не имеют качественных различий, но отличают­ся от образца к образцу степенью агглютинабельности. Выраженность агглю­тинации (агглютинабельность) определяется количеством антигена, представ­ленного на поверхности эритроцитов, что обусловлено генетическими фактора­ми. Агглютинабельность эритроцитов людей с генотипом cDE/cDE выражена сильнее, чем эритроцитов лиц с генотипом CDe/CDe, поскольку количество ан­тигенных участков на эритроцитах DE больше, чем на эритроцитах DC. Редкий фенотип -D-, при котором отсутствуют антигены С, Е, с и е, отличается наибо­лее высоким содержанием субстанции D по сравнению с нормальным D-типом. Менее всего антиген D выражен на эритроцитах со слабым D-фенотипом (Du) и совсем не выражен на эритроцитах Rhnull.

В редких случаях варианты агглютинабельности могут быть обусловлены качественными различиями парциальных антигенов, которые содержат непол­ный набор D-эпитопов.

После открытия групповых антигенов возникла проблема установления их структуры. Задачей иммунохимиков в области групп крови человека являлось выделить и охарактеризовать структуры, ответственные за специфические свойства веществ, обладающих антигенной активностью, и объяснить, почему они независимы в серологических реакциях.

Выделение антигенов А и В из эритроцитов оказалось непростой задачей. На эритроцитах и других клетках они представлены в водонерастворимой форме. Их удалось выделить экстракцией этанолом. Однако вскоре выяснилось, что эти веще­ства содержатся во многих органах и тканях организма человека, при этом они рас­творимы в воде. Для их выделения к 5 г различных тканей добавляли 25 мл воды, экстракт кипятили в течение 10 мин и затем центрифугировали. Полученный оса­док растворяли в 2,5 мл изотонического раствора натрия хлорида. О присутствии субстанций А и В судили по способности экстрактов угнетать активность анти-А- и/или анти-В-антител (Freidenreich и Hartmann, 1938).

Эти и другие подобные исследования позволили установить, что наиболь­шее количество вещества А и В содержится в секреторных тканях (слизистая оболочка желудка, слюнные железы, жидкость кист яичников) и в меконии.

Эти же вещества были выделены из стенок желудков лошадей, коров и свиней. Процедуру чаще выполняли замораживанием - оттаиванием экстрактов с по­следующим растворением высушенного осадка в охлажденном 90% раство­ре фенола. Фракция, не поддававшаяся растворению, обладала наибольшей ан­тигенной активностью. Высокой степени очистки удавалось добиться ультра­центрифугированием и использованием органических растворителей, напри­мер этанола. Оказалось, что по своей природе группоспецифические вещества А, В и Н являются мукополисахаридами, содержащими приблизительно 85 % углеводов и 15 % белков. Мягкий кислотный гидролиз приводил к исчезнове­нию специфической активности субстрата. При этом высвобождались сахара. Изучение структуры полисахаридов клеточных мембран бактерий подтверди­ло их антигенные различия, обусловленные именно присутствием тех или иных терминальных углеводных группировок.

Существенный прогресс в изучение природы веществ А, В и Н внесли работы Watkins’а и Morgan’а, показавших присутствие анти-Н-подобных агглютининов в сыворотке угря. Последние вызывали агглютинацию эритроцитов человека груп­пы О. Их активность ингибировалась L-фукозой. При последующих исследовани­ях обнаружено, что способность анти-А-лектинов агглютинировать эритроциты А устраняется добавлением в них Ы-ацетил-О-галакгозамина. Анти-В-антитела ней­трализовались D-галакгозой соответственно. Эти результаты были подтверждены при использовании экзогликозидаз, выделенных из Trichomonas foetus и Clostridium welchii. Указанные ферменты разрушали вещества А, В и Н. В то же время актив­ность этих ферментов устраняли К-ацетил-Б-галакгозамин, D-галактоза и L-фукоза соответственно, что указывало на химическую природу группового вещества.

В настоящее время химическая структура групповых веществ хорошо изуче­на (рис. 3.6).

Биохимия антигенов АВО и Н

Антигены систем АВО и Н представляют собой олигосахаридные цепи, связанные с полипептидами (гликопротеины) или церамидами (гликосфинго- липиды).

Выделяют 2 класса олигосахаридных цепей, которые экспрессируют АВН- антигены. Первый из них представлен N-гликанами - разветвленными струк­турами, связанными через аминогруппы аспарагина, и N-ацетилглюкозамин. Второй класс представлен О-гликанами, имеющими простую или сложную структуру, связывание в них происходит через гидроксильные группы серина или треонина также через N-ацетилглюкозамин.

Гликосфинголипиды (углеводные цепи, присоединенные к церамиду) под­разделяют в зависимости от биохимической природы на глобозиды, лактозиды и ганглиозиды.

Основная масса антигенов Н, А и В организма представлена гликопротеина­ми, доля гликосфинголипидов существенно меньше.

Антигены Н, А и В формируются трансферазами, которые присоединяют соот­ветствующие моносахариды к цепям-предшественникам.

Н-антиген представлен L-фукозой, присоединенной в позиции С-2 терми­нального галактозного остатка.

А- и В-антигены появляются в результате присоединения к фукозилиро- ванному галакгозному остатку (Н-антигену) N-ацетил-Б-галактозамина или D-галактозы в позиции С-3. Хотя структура Н-антигена представлена не только фукозой, данная группировка считается иммунодетерминантной, поскольку де- фукозилирование приводит к утрате Н-серологической активности субстрата. Аналогичным образом 1Ч-ацетил-0-галактозамин и D-галактозу относят к имму- нодетерминантным структурам, определяющим А- и В-серологическую актив­ность соответственно (Schenkel-Brunner [195]).

Выделяют шесть типов АВН-активных цепей (типы 1 - 6). Цепи типа 1 присутствуют в секретах, плазме и тканях энтодермального происхождения. Цепями типа 2 представлено большинство АВН-активных олигосахаридов на эритроцитах и в тканях экто- и мезодермального происхождения. Тип 3 несет антигенные детерминанты в гликолипидах эритроцитной мембраны и в муци­не у индивидов группы A (Anstee [68]). Тип 4 связан с гликолипидами и пред­ставлен в небольшом количестве на эритроцитах (Anstee [68], Daniels [87], Schenkel-Bnmner [195]). Тип 6 присутствует в виде свободных олигосахари­дов в грудном молоке и моче. Цепи 5-го типа в организме не встречаются, они синтезированы искусственно (Daniels [87], Schenkel-Brunner [195]).

Синтез Н-антигена происходит при участии а1,2-Ь-фукозилтрансферазы, ко­торая обеспечивает перенос фукозы от гуанозин-дифосфата (ГДФ) к галактоз- ному остатку цепи-предшественника в позиции С-2. Известны 2 типа al,2-L- фукозилтрансферазы, синтез каждого из них контролируют высокогомологичные, однако генетически независимыме друг от друга локусы FUT1(H) и FUT2(SE). Они расположены на хромосоме 19. Продукты указанных генов (ферменты) обе­спечивают фукозилирование и образование Н-активных структур в различных тканях. FUT1(H) обладает большей аффиностью к цепям типа 2, в то время как FUT2(SE) - к цепям 1-го типа. У подавляющего большинства людей антиген Н присутствует в обязательном порядке, Н-дефицитные фенотипы очень редки.

Н-антиген, образовавшийся в результате действия al ,2-Ь-фукозилтрансфераз, является субстратом для дальнейшего шикозилирования А- и В-специфическими трансферазами, обеспечивающими присоединение иммунодетерминантных груп­пировок: М-ацетил-О-галактозамина и/или D-галакгозы, после чего субстрат при­обретает А- и/или В-антигенные свойства.

Гены, контролирующие А- и В-трансферазы, независимы от локусов FUT1(H) и FUT2(SE), картированы на хромосоме 9, в локус АВО. Последний нередко содержит молчащие аллели О1, О2 и др., в присутствии которых синте­за А- и В-трансфераз не происходит. У лиц, гомозиготных по таким аллелям, ве­щество Н не конвертируется далее в антигены А.

Присутствие Н-, А- и В-трансфераз в сыворотке крови и на эритроцитах устанавливают с помощью специфических антител, которые нередко образуют­ся после трансплантации органов (Eiz-Vesper и соавт. [96]).

Н.   В. Бовин и др. (1990) создали искусственные А- и В-субстанции биохи­мическим синтезом, однако они, несмотря на их структурное сходство с есте­ственным группоспецифическим веществам, не нашли применения, посколь­ку их адсорбционная активность в отношении а- и (3-изогемаагглютининов была низкая.

Сочетание гена Я с геном Se приводит к тому, что на эритроцитах присутству­ет вещество Н одновременно с А и/или В в зависимости от того, какой аллель АВО унаследован (табл. 3.13). Если аллель Se по наследству не передается, то ве­щества А, В и Н в секретах практически отсутствуют (обычные невыделители).

 

Гомозиготные комбинации генов h и se проявляются как Н-дефицит и невы- делительство.

Другие варианты гена h способны кодировать синтез вещества Н в неболь­шом количестве. Последнее преобразуется нормально функционирующими А- и В-трансферазами в небольшое количество антигенов А и В, которые можно выявить с помощью адсорбции - элюции.

Распределение группоспецифических веществ А, В и Н у лиц с Н-дефицитом
 

Фенотип

Гены

АВН-вещества на эритроцитах

АВН-вещества в слюне

Выделитель АВН

Я, Se, (АВО) ’

Н (А или В)

Н (А или В)

Невыделитель АВН

Я, sese, (АВО)

Тоже

нет

Oh Indian тип 1

hh, sese, (АВО)

нет

Тоже

Oh Indian вариант

hh, sese, (АВО) r'

Следы Н, А и/или В

"

Oh Reunion тип Afa и Bfa

hh, sese, (ABO)

То же

 

Н-дефицитный выделитель ОО

hh, Se, 00

Следы Н

н

Н-дефицитный выделитель с наличием генов А или В

hh, Se, А или В

Следы А или В

*Н, А или В

Как указывалось выше, у гомозигот hh при отсутствии гена Se вещества Н, А и В в секретах отсутствуют. Эти лица способны образовывать анти-Н-антитела.

При отсутствии гена Я (комбинации: hh, Se, ОО', hh, Se, А или В) синтеза соот­ветствующего группоспецифического вещества на эритроцитах не происходит. В то же время в плазме крови и секретах вещество Н определяется, поскольку Se- специфическая трансфераза присоединяет L-фукозу к цепям-предшественникам типов 1 и 3. Некоторое количество этой Н-субстанции адсорбируется на эритро­цитах, чем и можно объяснить слабоположительные реакции эритроцитов с анти- Н-антителами у обладателей Н-дефицитного фенотипа.

с / Синтезируемые за счет других трансфераз А- и В-подобные вещества так­же могут быть адсорбированы эритроцитами и их небольшое количество может быть обнаружено на указанных клетках.

Наилучшим образом возникновение различных Н-дефицитных фенотипов (Бомбей, пара-Бомбей, Реюнион, Нт) объясняет концепция взаимодействия ген­ных локусов H/h и Se/se. Теоретически у родителей Hh,Sese х Hh, Sese воз­можно рождение детей как с фенотипом Бомбей (hh, sese), так и другими Н-дефицитными фенотипами (hh, Sese; hh, SeSe) с наличием выделительства. В действительности такие сочетания генов чрезвычайно редки. Во-первых, ал­лель h крайне редок. Во-вторых, гены указанных локусов настолько тесно сце­плены между собой, что вероятность рекомбинаций между ними очень мала.

С помощью молекулярно-генетических методов идентифицировано несколько вариантов аллеля h, однако неясно, отличаются ли они между собой в функ­циональном отношении. Некоторые из указанных аллелей способны кодировать синтез незначительного количества вещества Н. Несмотря на многочисленные доказательства независимости локусов Hh и Sese друг от друга, кодируемые ими фукозил-трансферазы обладают перекрестной способностью к гликозили- рованию соответствующих исходных субстратов. Так, //-специфическая транс- фераза, присоединяющая L-фукозу к цепям типов 2 и 4, проявляет тропность в отношении цепей типов 1 и 3. Соответственно ^-специфическая трансфера- за, гликозилирующая цепи типов 1 и 3, захватывает в этот процесс цепи типов 1 и 4. Такая перекрестная активность в ряде случаев лежит в основе следовой экспрессии антигенов А, В и Н на эритроцитах.

Антигены А, В и Н, адсорбированные из плазмы

Большая часть антигенных веществ А, В и Н синтезируется в процессе эри­трогенеза за счет активности соответствующих трансфераз. Вместе с тем неко- тороее количество указанных группоспецифических субстанций эритроциты адсорбируют из плазмы. Гликосфинголипиды, присутствующие в плазме и не­сущие вещества Н, А или В, могут встраиваться в мембрану эритроцитов.

Renton и Hancock в 1962 г. обнаружили, что эритроциты группы О, перели­тые реципиенту с группой А, приобретают А-антиген. Указанные эритроциты реагировали с антителами анти-А,В и лектином анти-Aj из Dolichos biflorus. С сывороткой анти-А лиц группы В эти эритроциты не реагировали. Авторы уста­новили, что антитела анти-А,В взаимодействуют с детерминантами, располо­женными на цепях типа 1 и 2, в то время как лектин распознает антигенную де­терминанту, локализованную на цепях типа 2. Подобную картину наблюдали в экспериментах с эритроцитами Oh. После контакта с гликолипидной фракцией плазмы лиц О Le(a-b-) выделителей эритроциты Oh приобретали способность агглютинироваться антителами против цепей 1Н-типа, но не агглютинирова­лись анти-Н-антителами, присутствующими у лиц Oh, а также анти-Н-лектином из Ulex europaeus. Очевидно, что антитела анти-Н, имеющиеся у лиц О., подоб­но анти-Н-лектину из Ulex europaeus, распознают А-антигенную детерминанту на цепях 2Н-типа.

Лимфоциты приобретают антигены Н, А и В из плазмы. Эти антигены встра­иваются в мембрану химическим путем в виде гликосфинголипидов, вырабаты­ваемых секреторными клетками. Существует и другое суждение: все групповые АВО-антигенные детерминанты, присутствующие в этх клетках, пассивно ад­сорбированы ими из плазмы. Изогемагглютинины, нередко содержащиеся в ти- пирующих анти-НЬА-сыворотках, могут реагировать с АВО-антигенами лим­фоцитов, адсорбированными из плазмы, и искажать результаты лимфоцитоток­сического теста.

На тромбоцитах антигены Н, А и В появляются за счет не только адсорб­ции указанных субстанций из плазмы, но и собственного синтеза. Тромбоциты лиц А2 несут меньше антигена А по сравнению с людьми, имеющими под­группу Аг

Race и Sanger [184] предложили разделить подгруппы В на три категории (табл. 3.11).

Категории и подгруппы антигена В

Приобретенный В-антиген выражен слабее по сравнению с нормальным В-антигеном у лиц группы В и АВ. Отмечены количественные вариации его экспрессии. Его лучше определять антителами анти-В от лиц А2, чем от лиц Аг В сыворотке крови некоторых людей О и А присутствует особая фракция ан­тител, специфически реагирующих с приобретенным В-антигеном. Последнюю можно выделить адсорбцией - элюцией. Некоторые моноклональные антитела анти-В реагируют с приобретенным В-антигеном. При иммунизации животных также удавалось получить антитела, которые специфически реагировали с при­обретенным антигеном В.

Группа крови лиц с приобретенным В-антигеном в рутинных тестах ин­терпретируется как АВ (Gerbal и соавт. [111]). Описано гемотрансфузион- ное осложнение с летальным исходом, когда реципиент группы А с приобре­тенным антигеном В получил трансфузию эритроцитов АВ (Garratty и соавт. [108]). Отмечено также, что эритроциты, несущие приобретенный В-антиген, нередко обладают полиагглютинабельностью (Veneman и соавт. [216]). Первоначально полагали, что появление антигена В обусловлено адсорбци­ей на эритроцитах А В-подобных бактериальных гликолипидов. Позднее было показано, что приобретенный антиген В является результатом своеобразного энзимирования эритроцитов, сопровождающегося деацетилированием мем­браны (Schenkel-Bnmner [195]). Сыворотки крови некоторых лиц с приобре­тенным В-антигеном обладали способностью конвертировать эритроциты А в А(В) (Stayboldt и соавт. [204]). Оказалось, что они содержат фермент, вызыва­ющий частичное деацетилирование N-ацетилгалактозамина, в результате чего появляется В-серологическая активность, выявляемая моноклональными анти­телами (Okubo и соавт. [173]). В пользу деацетилирования как причины ука­занного феномена свидетельствовали также другие факты: во-первых, только эритроциты группы А способны приобретать антиген В, во-вторых, экспрес­сия приобретенного антигена В обратно пропорциональна А-серологической активности эритроцитов.

Деацетилазы удалось выделить из культуры Clostridium tertium и некото­рых штаммов Escherichia coli. С помощью этих ферментов на эритроцитах А удавалось воспроизвести В-серологическую активность. Эритроциты груп­пы О такой конверсии не поддавались (Herron и соавт. [118]). Обработка эри­троцитов, несущих приобретенный антиген В, ангидрид ацетатом устраняла В-серологическую активность, при этом экспрессия антигена А восстанавлива­лась до первоначального уровня (Gerbal и соавт. [112]).

А-трисахариды, деацетилированные химическим путем, ингибировали ак­тивность анти-В-антител по отношению к приобретенному В. По отношению к нормальному антигену В ингибиции не наблюдали. В-трисахариды, в кото­рых галактозный остаток был заменен на аминогруппу, обладали аналогич­ным эффектом. Агглютинация с приобретенным антигеном В не происходи­ла, если в пробу добавляли галактозамин (Schenkel-Brunner [195]). С помощью молекулярно-генетических методов удалось дифференцировать лиц с обычным (врожденным) и приобретенным антигеном В (Fisher и соавт. [105]).

Н-дефицитные фенотипы

Как уже отмечалось выше, антиген Н является единственным серологически определяемым антигеном системы Hh. Эта система генетически независима от АВО, но вместе с тем обе системы имеют отчетливую фенотипическую связь. Экспрессия антигена Н неодинакова на эритроцитах разных групп, особенно слабых подгрупп, и убывает в последовательности О > А2 > А2В > В > Al > AtB.

У подавляющего большинства людей (99,99 %) эритроциты содержат Н-антиген, однако существуют редкие, Н-дефицитные фенотипы, при которых антиген Н отсутствует [77-79, 81]. К ним относят типы Бомбей и пара-Бомбей.

Оh (Bombay)

В 1952 г. Bhende и соавт. описали 3 жителей Бомбея (Индия), имевших нео­бычную группу О. Сыворотка их крови агглютинировала эритроциты А, В и, что было весьма неожиданным, эритроциты О. При этом собственные эритроциты не агглютинировались. Помимо антител анти-А и анти-В, сыворотки указанных лиц содержали антитела анти-Н, в то время как антиген Н в эритроцитах отсутство­вал, что также несвойственно группе О. Фенотип получил обозначение Bombay или Oh. Исследователи предположили, что локус АВО может содержать еще один аллель, который будучи в гомозиготной форме, приводит к формированию фено­типа Oh. Высказано также предположение, что указанный фенотип является ре­зультатом действия супрессорного гена, независимого от АВО. В последующие годы были найдены другие образцы крови Бомбей, в основном, среди лиц ин­дийского происхождения (Abu Sin и соавт. [65], Aloysia и соавт. [67], Beattie и со­авт. [70], Beranova и соавт. [75], Bhatia и соавт. [77, 78], Hrubishko и соавт. [120], Kitahama и соавт. [130], Moores и соавт. [160], Sringarm и соавт. [202]).

Н-дефицитные фенотипы встречаются крайне редко. Помимо индийцев они выявлены у тамилов - островитян Индийского океана, японцев, американских негров, жителей Таиланда и Судана (Daniels [87]).

Родителями лиц Oh часто являлись кровные родственники (Bhatia и соавт. [77, 79]). Во всех случаях о необычном фенотипе свидетельствовало присут­ствие антител анти-Н, агглютинирующих эритроциты О.

В слюне лиц Oh вещества А, В и Н отсутствуют.

Посемейные исследования подтвердили, что к возникновению фенотипа Бомбей гены локуса АВО не имеют прямого отношения.

Считается, что аллелем гена Я является молчащий ген h. Таким образом, фе­нотип Oh, лишенный антигена Н, возникает у лиц, гомозиготных (hh) по этому редкому аллелю (Ogasawara и соавт. [172], Wagner и соавт. [221]). Высказанное авторами предположение подтвердили молекулярно-генетические исследования Lee и соавт. [139], Schenkel-Brunner [195], Wagner и соавт. [221], показавшие,

эритроцитов специально подобранными трансферазами (а-галактозилазой, экс­трагированной из Trichomonas foetus) приводила к появлению Н-активности с одновременной утратой антигена В. Далее эти эритроциты (Н+В-) удавалось конвертировать в Ah(A+H~) добавлением А-трансферазы [195].

Эритроциты лиц Oh Reunion выделителей не агглютинируются большин­ством анти-Н-сывороток и лишь иногда дают слабоположительные реакции с высокоактивными анти-Н-антителами, присутствующими в сыворотках крови некоторых лиц Oh, или с другими анти-Н-реагентами. Эритроциты та­ких лиц обычно не реагируют с антителами анти-А и анти-В, однако клет­ки некоторых индивидов OhA выделителей могут вести себя в серологиче­ских тестах как Ах, демонстрируя слабоположительные реакции с высокоак­тивными антителами анти-А,В лиц О. Подобные слабые варианты антигена В описаны у лиц OhB.

В секретах лиц Oh Reunion выделителей содержание вещества Н в нор­ме, субстанции А и В также присутствуют, если данные лица имеют гены А и

В.  Сыворотки крови лиц Oh Reunion почти всегда содержат слабые холодовые анти-Н-подобные антитела. Их активность не ингибируется слюной выделите­лей групповых субстанций, они не реагируют с эритроцитами О новорожден­ных. Полагают, что эти антитела имеют специфичность анти-HI.

Индивиды, отнесенные к Н-дефицитному типу, найдены среди представи­телей различных этнических групп - жителей Индии, Европы, Японии, Китая, Юго-Восточной Азии, Среднего Востока, коренных жителей Америки. Их вы­являли с частотой от 1 на 5000 среди жителей Таиланда до 1 на 8000 - 1 на 16 000 среди китайцев.

 

Hm

Еще одна серия Н-дефицитных фенотипов характеризуется следовым коли­чеством или полным отсутствием антигенов А, В и Н на эритроцитах и одно­временно нормальным количеством соответствующих группоспецифических субстанций в секретах. Указанные фенотипы обозначены как Omh, Amh и В \ В настоящее время их называют Oh, Ah, Bh выделителями. Угнетение синтеза ве­щества Н у лиц Нт не столь выражено, как у лиц с фенотипами Бомбей, пара- Бомбей и Реюнион. Эритроциты Нт слабо реагируют с анти-Н-антителами, а строма эритроцитов и слюна таких лиц содержит вещество Н в норме.

Остается неясным: имеет ли указанный фенотип какие-либо селективные преимущества в регионе Индийского океана, где он в основном встречается?




Тесты для врачей

Наши партнеры